IDEAS home Printed from https://ideas.repec.org/f/c/ppe517.html
   My authors  Follow this author

Peter J G Pearson

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Wikipedia or ReplicationWiki mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.

    Mentioned in:

    1. Lentis/Jevons Paradox in Wikibooks (English)

Working papers

  1. Roger Fouquet & Peter J.G Pearson, 2011. "The Long Run Demand for Lighting: Elasticities and Rebound Effects in Different Phases of Economic Development," Working Papers 2011-06, BC3.

    Cited by:

    1. Davide Radi & Frank Westerhoff, 2024. "The green transition of firms: The role of evolutionary competition, adjustment costs, transition risk, and green technology progress," Papers 2410.20379, arXiv.org.
    2. Joachim Schleich & Bradford Mills & Elisabeth Dütschke, 2014. "A Brighter Future? Quantifying the Rebound Effect in Energy Efficient Lighting," Post-Print hal-00991732, HAL.
    3. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation," Ecological Economics, Elsevier, vol. 86(C), pages 188-198.
    4. Ravshonbek Otojanov and Roger Fouquet, 2018. "Factor prices and induced technical change in the Industrial Revolution," Working Papers 92, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    5. Cameron Hepburn & Alex Bowen, 2012. "Prosperity with growth: Economic growth, climate change and environmental limits," GRI Working Papers 93, Grantham Research Institute on Climate Change and the Environment.
    6. Roger Fouquet, 2011. "The Demand for Environmental Quality in Driving Transitions to Low Polluting Energy Sources," Working Papers 2011-11, BC3.
    7. Fouquet, Roger, 2016. "Lessons from energy history for climate policy: technological change, demand and economic development," LSE Research Online Documents on Economics 67785, London School of Economics and Political Science, LSE Library.
    8. Dirk-Jan van de Ven & Roger Fouquet, 2014. "Historical energy price shocks and their changing effects on the economy," GRI Working Papers 153, Grantham Research Institute on Climate Change and the Environment.
    9. Chun, Natalie & Jiang, Yi, 2013. "How households in Pakistan take on energy efficient lighting technology," Energy Economics, Elsevier, vol. 40(C), pages 277-284.
    10. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    11. Hunt, Lester C. & Ryan, David L., 2015. "Economic modelling of energy services: Rectifying misspecified energy demand functions," Energy Economics, Elsevier, vol. 50(C), pages 273-285.
    12. James D. Hamilton, 2013. "Oil prices, exhaustible resources and economic growth," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 1, pages 29-63, Edward Elgar Publishing.
    13. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    14. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    15. Severin Borenstein, 2013. "A Microeconomic Framework for Evaluating Energy Efficiency Rebound And Some Implications," NBER Working Papers 19044, National Bureau of Economic Research, Inc.
    16. Michel Damian, 2012. "Repenser l'économie du changement climatique," Post-Print halshs-00709929, HAL.
    17. Saunders, Harry D., 2014. "Toward a neoclassical theory of sustainable consumption: Eight golden age propositions," Ecological Economics, Elsevier, vol. 105(C), pages 220-232.
    18. Paul E. Brockway & Harry Saunders & Matthew K. Heun & Timothy J. Foxon & Julia K. Steinberger & John R. Barrett & Steve Sorrell, 2017. "Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach," Energies, MDPI, vol. 10(1), pages 1-24, January.
    19. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    20. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    21. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    22. Daldoul Manel & Dakhlaoui Ahlem, 2021. "The Direct Rebound Effect and Energy Efficiency Policy: An Econometric Estimation in the case of Tunisian Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 235-243.
    23. Roger Fouquet, 2012. "Trends in Income and Price Elasticities of Transport Demand (1850-2010)," Working Papers 2012-01, BC3.
    24. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
    25. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
    26. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    27. Norouzian Baghani, Abbas & Sadjadi, Sodeh & Yaghmaeian, Kamyar & Hossein Mahvi, Amir & Yunesian, Masud & Nabizadeh, Ramin, 2022. "Solid alcohol biofuel based on waste cooking oil: Preparation, properties, micromorphology, heating value optimization and its application as candle wax," Renewable Energy, Elsevier, vol. 192(C), pages 617-630.
    28. Roger Fouquet, 2013. "Long Run Demand for Energy Services: the Role of Economic and Technological Development," Working Papers 2013-03, BC3.
    29. Franceschini, Simone & Borup, Mads & Rosales-Carreón, Jesús, 2018. "Future indoor light and associated energy consumption based on professionals' visions: A practice- and network-oriented analysis," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 1-11.
    30. Blum, Bianca & Hübner, Julian & Milde, Adrian & Neumärker, Karl Justus Bernhard, 2018. "On the evidence of rebound effects in the lighting sector: Implications for promoting LED lighting," The Constitutional Economics Network Working Papers 05-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    31. Hu, Wenhao & Ho, Mun S. & Cao, Jing, 2019. "Energy consumption of urban households in China," China Economic Review, Elsevier, vol. 58(C).
    32. Odeck, James & Johansen, Kjell, 2016. "Elasticities of fuel and traffic demand and the direct rebound effects: An econometric estimation in the case of Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 1-13.
    33. Capasso, Marco & Hansen, Teis & Heiberg, Jonas & Klitkou, Antje & Steen, Markus, 2019. "Green growth – A synthesis of scientific findings," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 390-402.
    34. Roger Fouquet, 2013. "Low-carbon economy: dark age or golden age?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 32, pages 682-708, Edward Elgar Publishing.
    35. Meza, Carlos Germán & Seger Mercedes, Sonia & Sauer, Ildo Luís, 2014. "Nicaragua's 2013 residential lighting program: Prospective assessment," Energy Policy, Elsevier, vol. 67(C), pages 522-530.
    36. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    37. Ensieh Shojaeddini, 2020. "Heterogeneity in the Rebound Effect: Evidence from Efficient Lighting Subsidies," Working Papers 2020-07, Colorado School of Mines, Division of Economics and Business.
    38. Roger Fouquet, 2015. "Lessons from energy history for climate policy," GRI Working Papers 209, Grantham Research Institute on Climate Change and the Environment.
    39. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    40. Dütschke, Elisabeth & Frondel, Manuel & Schleich, Joachim & Vance, Colin, 2018. "Moral licensing: Another source of rebound?," Ruhr Economic Papers 747, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    41. Harry D. Saunders, 2015. "Recent Evidence for Large Rebound: Elucidating the Drivers and their Implications for Climate Change Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    42. Dan Bogart, 2013. "The Transportation Revolution in Industrializing Britain: A Survey," Working Papers 121306, University of California-Irvine, Department of Economics.
    43. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
    44. Lester C Hunt & David L Ryan, 2014. "Catching on the Rebound: Why Price Elasticities are Generally Inappropriate Measures of Rebound Effects," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 148, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.

  2. Hinrichs, Hauke & Madlener, Reinhard & Pearson, Peter, 2010. "Liberalisation of Germany’s Electricity System and the Ways Forward of the Unbundling Process: A Historical Perspective and an Outlook," FCN Working Papers 26/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Cited by:

    1. Bernstein, Ronald & Madlener, Reinhard, 2011. "Responsiveness of Residential Electricity Demand in OECD Countries: A Panel Cointegation and Causality Analysis," FCN Working Papers 8/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Challenges in the Evaluation of Ultra-Long-Lived Projects: Risk Premia for Projects with Eternal Returns or Costs," FCN Working Papers 13/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Rohlfs, Wilko & Madlener, Reinhard, 2011. "Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting Endogenous Risk Structures," FCN Working Papers 22/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    4. Dergiades, Theologos & Madlener, Reinhard & Christofidou, Georgia, 2018. "The nexus between natural gas spot and futures prices at NYMEX: Do weather shocks and non-linear causality in low frequencies matter?," The Journal of Economic Asymmetries, Elsevier, vol. 18(C), pages 1-1.
    5. Harmsen - van Hout, Marjolein & Ghosh, Gaurav & Madlener, Reinhard, 2013. "An Evaluation of Attribute Anchoring Bias in a Choice Experimental Setting," FCN Working Papers 6/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    6. Michelsen, Carl Christian & Madlener, Reinhard, 2011. "Homeowners' Preferences for Adopting Residential Heating Systems: A Discrete Choice Analysis for Germany," FCN Working Papers 9/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    7. Kraas, Birk & Schroedter-Homscheidt, Marion & Pulvermüller, Benedikt & Madlener, Reinhard, 2011. "Economic Assessment of a Concentrating Solar Power Forecasting System for Participation in the Spanish Electricity Market," FCN Working Papers 12/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Harmsen - van Hout, Marjolein & Ghosh, Gaurav & Madlener, Reinhard, 2013. "The Impact of Green Framing on Consumers’ Valuations of Energy-Saving Measures," FCN Working Papers 7/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

  3. Roger Fouquet & David Hawdon & Peter J G Pearson & Colin Robinson & Paul Stevens, 1995. "The SEEC UK Energy Demand Forecast (1994-2000)," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) OP2, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.

    Cited by:

    1. Erdogdu, Erkan, 2005. "Energy market reforms in Turkey: An economic analysis," MPRA Paper 26929, University Library of Munich, Germany.
    2. Fouquet, Roger & Pearson, Peter & Hawdon, David & Robinson, Colin & Stevens, Paul, 1997. "The future of UK final user energy demand," Energy Policy, Elsevier, vol. 25(2), pages 231-240, February.

  4. Peter J G Pearson, 1994. "Energy, Externalities and Environmental Quality: Will Development Cure the Ills it Creates?," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 78, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.

    Cited by:

    1. Auci, Sabrina & Vignani, Donatella, 2013. "Environmental Kuznets curve and domestic material consumption indicator: an European analysis," MPRA Paper 52882, University Library of Munich, Germany.
    2. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    3. Roger Fouquet, 2011. "The Demand for Environmental Quality in Driving Transitions to Low Polluting Energy Sources," Working Papers 2011-11, BC3.
    4. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    5. Wei-Bin Zhang, 2018. "Health, Environment, and Wealth," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 7(3), pages 109-123, December.
    6. Wei-Bin Zhang, 2013. "Dynamic Interactions among Growth, Environmental Change, Habit Formation, and Preference Change," The International Journal of Economic Behavior - IJEB, Faculty of Business and Administration, University of Bucharest, vol. 3(1), pages 3-25, December.
    7. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    8. Dennis Gain & Tsunemi Watanabe, 2017. "Expert Evaluation of Subsidies for the Management of Fragmented Private Forest in Regards to National Biodiversity Goals—The Case of Kochi Prefecture, Japan," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    9. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Carbon dioxide emission, institutional quality, and economic growth: Empirical evidence in Malaysia," Renewable Energy, Elsevier, vol. 68(C), pages 276-281.
    10. Alshehry, Atef Saad & Belloumi, Mounir, 2017. "Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1339-1347.
    11. Simone Borghesi, 1999. "The Environmental Kuznets Curve: a Survey of the Literature," Working Papers 1999.85, Fondazione Eni Enrico Mattei.
    12. Albert Lessoua, 2000. "Evaluating the Relationship Between Household Income and Atmospheric Pollution: Reconsidering the Environmental Kuznets Curve in Region of Haute Normandie," Regional and Urban Modeling 283600054, EcoMod.
    13. Anver C. Sadath & Rajesh H. Acharya, 2019. "Economic growth and environmental degradation: How to balance the interests of developed and developing countries," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 25-47.
    14. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    15. Bahar Celikkol Erbas & Ebru Guven Solakoglu, 2017. "In the Presence of Climate Change, the Use of Fertilizers and the Effect of Income on Agricultural Emissions," Sustainability, MDPI, vol. 9(11), pages 1-17, October.
    16. Roger Fouquet, 2011. "Long Run Trends in Energy-Related External Costs," Working Papers 2011-01, BC3.
    17. Gang Liu, 2006. "A causality analysis on GDP and air emissions in Norway," Discussion Papers 447, Statistics Norway, Research Department.
    18. Wei-Bin Zhang, 2015. "The Dynamics of Wealth, Environment and Land Value in a Three-Sector Growth Model," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 13(2), pages 197-228.
    19. Wei-Bin Zhang, 2015. "Oscillations in a Growth Model with Capital, Technology and Environment with Exogenous Shocks," Academicus International Scientific Journal, Entrepreneurship Training Center Albania, issue 12, pages 73-93, July.
    20. Roberto Martino & Phu Nguyen-Van, 2016. "Environmental Kuznets curve and environmental convergence: A unified empirical framework for CO2 emissions," Working Papers of BETA 2016-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    21. Flores, Bryan & Alvarado, Rafael, 2022. "Influencia de la Renta de Recursos Naturales y la Inversión Extranjera en la Degradación Ambiental de Ecuador [Influence of the Rent of Natural Resources and Foreign Investment in the Environmental," MPRA Paper 113736, University Library of Munich, Germany.
    22. Ramlall, Indranarain, 2017. "Internalizing CO2 emissions via central banks’ financials: Evidence from the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 549-559.
    23. Chahreddine ABBES, 2009. "When Free Trade is Good for the Environment?," EcoMod2009 21500000, EcoMod.
    24. Giovanis, Eleftherios, 2013. "Environmental Kuznets curve: Evidence from the British Household Panel Survey," Economic Modelling, Elsevier, vol. 30(C), pages 602-611.
    25. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter?," Energy Policy, Elsevier, vol. 68(C), pages 490-497.
    26. Muhammad Shahbaz & Naceur Khraief & Mantu Kumar Mahalik, 2020. "Investigating the environmental Kuznets’s curve for Sweden: evidence from multivariate adaptive regression splines (MARS)," Empirical Economics, Springer, vol. 59(4), pages 1883-1902, October.
    27. Auci, Sabrina & Trovato, Giovanni, 2011. "The environmental Kuznets curve within European countries and sectors: greenhouse emission, production function and technology," MPRA Paper 53442, University Library of Munich, Germany.
    28. Javier Capó Parrilla, 2009. "Curva de Kuznets ambiental: Evidencia para Europa," CRE Working Papers (Documents de treball del CRE) 2009/3, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    29. Gawande, Kishore & Berrens, Robert P. & Bohara, Alok K., 2001. "A consumption-based theory of the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 37(1), pages 101-112, April.
    30. Blackman, Allen & Mathis, Mitchell & Nelson, Peter, 2001. "The Greening of Development Economics: A Survey," Discussion Papers 10662, Resources for the Future.

  5. Roger Fouquet & David Hawdon & Peter J G Pearson & Colin Robinson & Paul Stevens, 1993. "The SEEC UK Energy Demand Forecast (1993-2000)," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) OP1, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.

    Cited by:

    1. Fouquet, Roger & Pearson, Peter & Hawdon, David & Robinson, Colin & Stevens, Paul, 1997. "The future of UK final user energy demand," Energy Policy, Elsevier, vol. 25(2), pages 231-240, February.

  6. Walter Elkan & Gerald Leach & Peter Pearson & W. N. T. Roberts & John Soussan & Paul Stevens, 1987. "Transitions between Traditional and Commercial Energy in the Third World," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 35, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.

    Cited by:

    1. Patricia Iyore Ajayi, 2018. "Urban Household Energy Demand in Southwest Nigeria," African Development Review, African Development Bank, vol. 30(4), pages 410-422, December.
    2. Madubansi, M. & Shackleton, C.M., 2006. "Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa," Energy Policy, Elsevier, vol. 34(18), pages 4081-4092, December.

  7. Peter J. G. Pearson, 1984. "Energy Policy, Environment and Income Distribution in LDCs: an Input-Output Approach," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 15, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.

    Cited by:

    1. Hawdon, David & Pearson, Peter, 1995. "Input-output simulations of energy, environment, economy interactions in the UK," Energy Economics, Elsevier, vol. 17(1), pages 73-86, January.

Articles

  1. Chris Foulds & Sarah Royston & Thomas Berker & Efi Nakopoulou & Zareen Pervez Bharucha & Rosie Robison & Simone Abram & Branko Ančić & Stathis Arapostathis & Gabriel Badescu & Richard Bull & Jed Cohen, 2022. "An agenda for future Social Sciences and Humanities research on energy efficiency: 100 priority research questions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-18, December.

    Cited by:

    1. Antonopoulos, Chrissi A. & Fuentes, Tracy L. & McCord, Kieren H. & Rackley, Adrienne L.S. & Biswas, Saurabh, 2024. "Regional assessment of household energy decision-making and technology adoption in the United States," Energy Policy, Elsevier, vol. 185(C).
    2. Esther Oliver & Gisela Redondo-Sama & Ane López Aguileta & Ana Burgues-Freitas, 2023. "Research agenda to engage citizens in science through social media communicative observations," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-4, December.

  2. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.

    Cited by:

    1. Roberts, Cameron & Geels, Frank W., 2019. "Conditions for politically accelerated transitions: Historical institutionalism, the multi-level perspective, and two historical case studies in transport and agriculture," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 221-240.
    2. Köhler, Jonathan & Turnheim, Bruno & Hodson, Mike, 2020. "Low carbon transitions pathways in mobility: Applying the MLP in a combined case study and simulation bridging analysis of passenger transport in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    4. Mattes, Jannika & Huber, Andreas & Koehrsen, Jens, 2015. "Energy transitions in small-scale regions – What we can learn from a regional innovation systems perspective," Energy Policy, Elsevier, vol. 78(C), pages 255-264.
    5. Nygrén, Nina A. & Kontio, Panu & Lyytimäki, Jari & Varho, Vilja & Tapio, Petri, 2015. "Early adopters boosting the diffusion of sustainable small-scale energy solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 79-87.
    6. Quiggin, Daniel & Buswell, Richard, 2016. "The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios," Energy, Elsevier, vol. 98(C), pages 253-270.
    7. Jan Frankowski & Joanna Mazurkiewicz & Jakub Sokolowski, 2021. "The coal phase-out and the labour market transition pathways: the case of Poland," IBS Working Papers 01/2021, Instytut Badan Strukturalnych.
    8. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    9. Fouquet, Roger, 2016. "Path dependence in energy systems and economic development," LSE Research Online Documents on Economics 67119, London School of Economics and Political Science, LSE Library.
    10. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    11. Lovell, Katherine & Watson, Jim & Hiteva, Ralitsa, 2022. "Infrastructure decision-making: Opening up governance futures within techno-economic modelling," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    12. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    13. Christophe Cassen & Meriem Hamdi-Chérif & Giancarlo Cotella & Jacopo Toniolo & Patrizia Lombardi & Jean-Charles Hourcade, 2018. "Low Carbon Scenarios for Europe: An Evaluation of Upscaling Low Carbon Experiments," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    14. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    15. Bjerkan, Kristin Ystmark & Ryghaug, Marianne, 2021. "Diverging pathways to port sustainability: How social processes shape and direct transition work," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    16. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    17. Greg Marsden & Noreen C. McDonald, 2019. "Institutional issues in planning for more uncertain futures," Transportation, Springer, vol. 46(4), pages 1075-1092, August.
    18. Anna Scolobig & Johan Lilliestam, 2016. "Comparing Approaches for the Integration of Stakeholder Perspectives in Environmental Decision Making," Resources, MDPI, vol. 5(4), pages 1-16, November.
    19. Trutnevyte, Evelina & Strachan, Neil & Dodds, Paul E. & Pudjianto, Danny & Strbac, Goran, 2015. "Synergies and trade-offs between governance and costs in electricity system transition," Energy Policy, Elsevier, vol. 85(C), pages 170-181.
    20. Hof, Andries F. & van Vuuren, Detlef P. & Berkhout, Frans & Geels, Frank W., 2020. "Understanding transition pathways by bridging modelling, transition and practice-based studies: Editorial introduction to the special issue," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    21. Rosenbloom, Daniel & Berton, Harris & Meadowcroft, James, 2016. "Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada," Research Policy, Elsevier, vol. 45(6), pages 1275-1290.
    22. Vandeventer, James Scott & Cattaneo, Claudio & Zografos, Christos, 2019. "A Degrowth Transition: Pathways for the Degrowth Niche to Replace the Capitalist-Growth Regime," Ecological Economics, Elsevier, vol. 156(C), pages 272-286.
    23. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    24. Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.
    25. Hoggett, Richard, 2014. "Technology scale and supply chains in a secure, affordable and low carbon energy transition," Applied Energy, Elsevier, vol. 123(C), pages 296-306.

  3. Arapostathis, Stathis & Carlsson-Hyslop, Anna & Pearson, Peter J G & Thornton, Judith & Gradillas, Maria & Laczay, Scott & Wallis, Suzanne, 2013. "Governing transitions: Cases and insights from two periods in the history of the UK gas industry," Energy Policy, Elsevier, vol. 52(C), pages 25-44.

    Cited by:

    1. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    4. Smink, Magda & Negro, Simona O. & Niesten, Eva & Hekkert, Marko P., 2015. "How mismatching institutional logics hinder niche–regime interaction and how boundary spanners intervene," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 225-237.
    5. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    6. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    7. Robertson, Elizabeth & O'Grady, Áine & Barton, John & Galloway, Stuart & Emmanuel-Yusuf, Damiete & Leach, Matthew & Hammond, Geoff & Thomson, Murray & Foxon, Tim, 2017. "Reconciling qualitative storylines and quantitative descriptions: An iterative approach," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 293-306.
    8. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
    10. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
    11. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    12. Londoño-Pulgarin, Diana & Cardona-Montoya, Giovanny & Restrepo, Juan C. & Muñoz-Leiva, Francisco, 2021. "Fossil or bioenergy? Global fuel market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Trutnevyte, Evelina & Strachan, Neil & Dodds, Paul E. & Pudjianto, Danny & Strbac, Goran, 2015. "Synergies and trade-offs between governance and costs in electricity system transition," Energy Policy, Elsevier, vol. 85(C), pages 170-181.
    14. Bolton, Ronan & Hannon, Matthew, 2016. "Governing sustainability transitions through business model innovation: Towards a systems understanding," Research Policy, Elsevier, vol. 45(9), pages 1731-1742.
    15. Yan Zhao & Vince McDonell & Scott Samuelsen, 2022. "Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations," Energies, MDPI, vol. 15(10), pages 1-50, May.
    16. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    17. Vandeventer, James Scott & Cattaneo, Claudio & Zografos, Christos, 2019. "A Degrowth Transition: Pathways for the Degrowth Niche to Replace the Capitalist-Growth Regime," Ecological Economics, Elsevier, vol. 156(C), pages 272-286.
    18. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    19. Lowes, Richard & Woodman, Bridget & Fitch-Roy, Oscar, 2019. "Policy change, power and the development of Great Britain's Renewable Heat Incentive," Energy Policy, Elsevier, vol. 131(C), pages 410-421.
    20. Hirmer, S.A. & George-Williams, H. & Rhys, J. & McNicholl, D. & McCulloch, M., 2021. "Stakeholder decision-making: Understanding Sierra Leone's energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

  4. Markusson, Nils & Kern, Florian & Watson, Jim & Arapostathis, Stathis & Chalmers, Hannah & Ghaleigh, Navraj & Heptonstall, Philip & Pearson, Peter & Rossati, David & Russell, Stewart, 2012. "A socio-technical framework for assessing the viability of carbon capture and storage technology," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 903-918.

    Cited by:

    1. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    2. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    3. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    4. Bhumika Gupta & Salil K. Sen, 2019. "Carbon capture usage and storage with scale-up : energy finance through bricolage deploying the co-integration methodology," Post-Print hal-02559884, HAL.
    5. Rasmus Lema & Björn Johnson & Allan Dahl Andersen & Bengt-Åke Lundvall & Ankur Chaudhary (ed.), 2014. "Low-Carbon Innovation and Development," Globelics Thematic Reviews, Globelics - Global Network for Economics of Learning, Innovation, and Competence Building Systems, Aalborg University, Department of Business and Management, number low-carbon, September.
    6. Otte, Pia Piroschka & Vik, Jostein, 2017. "Biochar systems: Developing a socio-technical system framework for biochar production in Norway," Technology in Society, Elsevier, vol. 51(C), pages 34-45.
    7. Ford, Rebecca & Walton, Sara & Stephenson, Janet & Rees, David & Scott, Michelle & King, Geoff & Williams, John & Wooliscroft, Ben, 2017. "Emerging energy transitions: PV uptake beyond subsidies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 138-150.
    8. Kern, Florian & Gaede, James & Meadowcroft, James & Watson, Jim, 2016. "The political economy of carbon capture and storage: An analysis of two demonstration projects," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 250-260.
    9. Gregory F. Nemet & Martina Kraus & Vera Zipperer, 2016. "The Valley of Death, the Technology Pork Barrel, and Public Support for Large Demonstration Projects," Discussion Papers of DIW Berlin 1601, DIW Berlin, German Institute for Economic Research.
    10. Normann, Håkon Endresen, 2017. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 80-93.
    11. Vlad-Cosmin Bulai & Alexandra Horobet & Oana Cristina Popovici & Lucian Belascu & Sofia Adriana Dumitrescu, 2021. "A VaR-Based Methodology for Assessing Carbon Price Risk across European Union Economic Sectors," Energies, MDPI, vol. 14(24), pages 1-21, December.
    12. Håkon Endresen Normann, 2016. "Policy networks in energy transitions: The cases of carbon capture and storage and offshore wind in Norway," Working Papers on Innovation Studies 20161026, Centre for Technology, Innovation and Culture, University of Oslo.
    13. Einsiedel, Edna F. & Boyd, Amanda D. & Medlock, Jennifer & Ashworth, Peta, 2013. "Assessing socio-technical mindsets: Public deliberations on carbon capture and storage in the context of energy sources and climate change," Energy Policy, Elsevier, vol. 53(C), pages 149-158.
    14. Abdul Manaf, Norhuda & Qadir, Abdul & Abbas, Ali, 2016. "Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions," Applied Energy, Elsevier, vol. 169(C), pages 912-926.
    15. Themann, Dörte & Brunnengräber, Achim, 2021. "Using socio-technical analogues as an additional experience horizon for nuclear waste management A comparison of wind farms, fracking, carbon capture and storage (CCS) with a deep-geological nuclear w," Utilities Policy, Elsevier, vol. 70(C).
    16. Watson, Jim & Kern, Florian & Markusson, Nils, 2014. "Resolving or managing uncertainties for carbon capture and storage: Lessons from historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 192-204.
    17. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. M. Lynne Markus & Kevin Mentzer, 2014. "Foresight for a responsible future with ICT," Information Systems Frontiers, Springer, vol. 16(3), pages 353-368, July.
    19. John Michael Humphries Choptiany & Ronald Pelot, 2014. "A Multicriteria Decision Analysis Model and Risk Assessment Framework for Carbon Capture and Storage," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1720-1737, September.
    20. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.

  5. Grünewald, Philipp H. & Cockerill, Timothy T. & Contestabile, Marcello & Pearson, Peter J.G., 2012. "The socio-technical transition of distributed electricity storage into future networks—System value and stakeholder views," Energy Policy, Elsevier, vol. 50(C), pages 449-457.

    Cited by:

    1. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    2. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    3. Ulrich J. Frey & Sandra Wassermann & Marc Deissenroth-Uhrig, 2020. "Storage Technologies for the Electricity Transition: An Analysis of Actors, Actor Perspectives and Transition Pathways in Germany," Energies, MDPI, vol. 14(1), pages 1-19, December.
    4. Lisa-Britt Fischer & Jens Newig, 2016. "Importance of Actors and Agency in Sustainability Transitions: A Systematic Exploration of the Literature," Sustainability, MDPI, vol. 8(5), pages 1-21, May.
    5. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    6. Zhang, Marina Yue, 2016. "Meso-level factors in technological transitions: The development of TD-SCDMA in China," Research Policy, Elsevier, vol. 45(2), pages 546-559.
    7. Schriever, Marlene & Halstrup, Dominik, 2018. "Exploring the adoption in transitioning markets: Empirical findings and implications on energy storage solutions-acceptance in the German manufacturing industry," Energy Policy, Elsevier, vol. 120(C), pages 460-468.
    8. Carbajo, Ruth & Cabeza, Luisa F., 2021. "Researchers perception regarding socio-technical approaches implementation in their own research. Thermal energy storage researchers as example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Yueqiang Xu & Petri Ahokangas & Jean-Nicolas Louis & Eva Pongrácz, 2019. "Electricity Market Empowered by Artificial Intelligence: A Platform Approach," Energies, MDPI, vol. 12(21), pages 1-21, October.
    10. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    11. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    12. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    13. Gaspari, Michele & Lorenzoni, Arturo & Frías, Pablo & Reneses, Javier, 2017. "Integrated Energy Services for the industrial sector: an innovative model for sustainable electricity supply," Utilities Policy, Elsevier, vol. 45(C), pages 118-127.
    14. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    15. Baumann, Manuel & Weil, Marcel & Peters, Jens F. & Chibeles-Martins, Nelson & Moniz, Antonio B., 2019. "A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 516-534.
    16. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    17. Ngar-yin Mah, Daphne & Wu, Yun-Ying & Ronald Hills, Peter, 2017. "Explaining the role of incumbent utilities in sustainable energy transitions: A case study of the smart grid development in China," Energy Policy, Elsevier, vol. 109(C), pages 794-806.
    18. Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.
    19. Wassermann, Sandra & Reeg, Matthias & Nienhaus, Kristina, 2015. "Current challenges of Germany’s energy transition project and competing strategies of challengers and incumbents: The case of direct marketing of electricity from renewable energy sources," Energy Policy, Elsevier, vol. 76(C), pages 66-75.

  6. Roger Fouquet & Peter J.G. Pearson, 2012. "The Long Run Demand for Lighting:Elasticities and Rebound Effects in Different Phases of Economic Development," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1). See citations under working paper version above.
  7. Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.

    Cited by:

    1. Davide Radi & Frank Westerhoff, 2024. "The green transition of firms: The role of evolutionary competition, adjustment costs, transition risk, and green technology progress," Papers 2410.20379, arXiv.org.
    2. Corrocher, Nicoletta & Grabner, Simone Maria & Morrison, Andrea, 2024. "Green technological diversification: The role of international linkages in leaders, followers and catching-up countries," Research Policy, Elsevier, vol. 53(4).
    3. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    4. Callan Harker & Maureen Hassall & Paul Lant & Nikodem Rybak & Paul Dargusch, 2022. "What Can Machine Learning Teach Us about Australian Climate Risk Disclosures?," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    5. Gnekpe, Christian & Plantec, Quentin, 2023. "Regulatory push-pull and technological knowledge dynamics of circular economy innovation," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Olner, Dan & Mitchell, Gordon & Heppenstall, Alison & Pryce, Gwilym, 2020. "The spatial economics of energy justice: modelling the trade impacts of increased transport costs in a low carbon transition and the implications for UK regional inequality," Energy Policy, Elsevier, vol. 140(C).
    7. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    8. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    9. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform Markets and Energy Services," Cambridge Working Papers in Economics 1361, Faculty of Economics, University of Cambridge.
    10. Islar, Mine & Brogaard, Sara & Lemberg-Pedersen, Martin, 2017. "Feasibility of energy justice: Exploring national and local efforts for energy development in Nepal," Energy Policy, Elsevier, vol. 105(C), pages 668-676.
    11. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    12. Fagerberg, Jan & Verspagen, Bart, 2020. "Technological revolutions, structural change & catching-up," MERIT Working Papers 2020-012, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. Rubio-Varas, Mar & Muñoz-Delgado, Beatriz, 2017. "200 years diversifying the energy mix? Diversification paths of the energy baskets of European early comers vs. latecomers," Working Papers in Economic History 2017/01, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    14. Su, Yifan & Xu, Guanghua, 2022. "Low-carbon transformation of natural resource industry in China: Determinants and policy implications to achieve COP26 targets," Resources Policy, Elsevier, vol. 79(C).
    15. Fertel, Camille & Bahn, Olivier & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Canadian energy and climate policies: A SWOT analysis in search of federal/provincial coherence," Energy Policy, Elsevier, vol. 63(C), pages 1139-1150.
    16. Millot, Ariane & Maïzi, Nadia, 2021. "From open-loop energy revolutions to closed-loop transition: What drives carbon neutrality?," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Baris Yuce & Monjur Mourshed & Yacine Rezgui, 2017. "A Smart Forecasting Approach to District Energy Management," Energies, MDPI, vol. 10(8), pages 1-22, July.
    18. Cecere, Grazia & Rexhäuser, Sascha & Schulte, Patrick, 2019. "From less promising to green? Technological opportunities and their role in (green) ICT innovation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 28(1), pages 45-63.
    19. Glasnovic, Zvonimir & Margeta, Karmen & Premec, Krunoslav, 2016. "Could Key Engine, as a new open-source for RES technology development, start the third industrial revolution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1194-1209.
    20. Wei Jin & ZhongXiang Zhang, 2015. "Levelling the Playing Field: On the Missing Role of Network Externality in Designing Renewable Energy Technology Deployment Policies," Working Papers 2015.76, Fondazione Eni Enrico Mattei.
    21. Daniel Hausknost & Willi Haas, 2019. "The Politics of Selection: Towards a Transformative Model of Environmental Innovation," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    22. Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
    23. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    24. Giray Gozgor & Sudharshan Reddy Paramati, 2021. "Does Energy Diversification Cause an Economic Slowdown? Evidence from a Newly Constructed Energy Diversification Index," CESifo Working Paper Series 9247, CESifo.
    25. He, Haonan & Chen, Wenze & Zhou, Qi, 2023. "Subsidy allocation strategies for power industry’s clean transition under Bayesian Nash equilibrium," Energy Policy, Elsevier, vol. 182(C).
    26. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    27. Patrick Bolton Patrick & Després Morgan & Pereira da Silva Luiz Awazu & Samama Frédéric & Svartzman Romain, 2020. "“Green Swans”: central banks in the age of climate-related risks [Le « Cygne Vert » : les banques centrales à l’ère des risques climatiques]," Bulletin de la Banque de France, Banque de France, issue 229.
    28. Xifeng Wu & Yue Shen & Jin Chen & Yu Chen, 2023. "Social–financial approach for analyzing financial transitions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    29. Foster, Edward & Contestabile, Marcello & Blazquez, Jorge & Manzano, Baltasar & Workman, Mark & Shah, Nilay, 2017. "The unstudied barriers to widespread renewable energy deployment: Fossil fuel price responses," Energy Policy, Elsevier, vol. 103(C), pages 258-264.
    30. Nihal Ahmed & Adnan Ahmed Sheikh & Farhan Mahboob & Muhammad Sibt e Ali & Elżbieta Jasińska & Michał Jasiński & Zbigniew Leonowicz & Alessandro Burgio, 2022. "Energy Diversification: A Friend or Foe to Economic Growth in Nordic Countries? A Novel Energy Diversification Approach," Energies, MDPI, vol. 15(15), pages 1-15, July.
    31. Bryant, Scott T. & Straker, Karla & Wrigley, Cara, 2020. "Designing our sustainable energy future: A shock doctrine for energy," Energy Policy, Elsevier, vol. 147(C).
    32. Wang, Han & Chen, Zhoupeng & Wu, Xingyi & Nie, Xin, 2019. "Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis? —Empirical analysis based on the PSM-DID method," Energy Policy, Elsevier, vol. 129(C), pages 930-938.
    33. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    34. Wenjing Ma & Mingyue Wang, 2023. "Discussion on the Relationship between Environmental Regulation and Green Technology Innovation from the Perspective of Innovation External Cooperation: Evidence from Chinese Private Enterprises," Sustainability, MDPI, vol. 15(23), pages 1-28, November.
    35. Ferguson-Cradler, Gregory, 2020. "Ownership in the electricity market: Property, the firm, and the climate crisis," MPIfG Discussion Paper 20/5, Max Planck Institute for the Study of Societies.
    36. Alex Bowen, 2014. "Green growth," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 15, pages 237-251, Edward Elgar Publishing.
    37. Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    38. Cristina Martín & Tony Castillo-Calzadilla & Kristina Zabala & Eneko Arrizabalaga & Patxi Hernández & Lara Mabe, 2021. "The opportunity for smart city projects at municipal scale: Implementing a positive energy district in Zorrozaurre," EKONOMIAZ. Revista vasca de Economía, Gobierno Vasco / Eusko Jaurlaritza / Basque Government, vol. 99(01), pages 119-149.
    39. Catalin Postelnicu & Sorin Calea, 2019. "The Fourth Industrial Revolution. Global Risks, Local Challenges for Employment," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 15(2), pages 195-206.
    40. Rubio-Varas, Mar & Muñoz-Delgado, Beatriz, 2019. "Long-term diversification paths and energy transitions in Europe," Ecological Economics, Elsevier, vol. 163(C), pages 158-168.
    41. Hu, Changshuai & Du, Dan & Huang, Junbing, 2023. "The driving effect of energy demand evolution: From the perspective of heterogeneity in technology," Energy, Elsevier, vol. 275(C).
    42. Hoggett, Richard, 2014. "Technology scale and supply chains in a secure, affordable and low carbon energy transition," Applied Energy, Elsevier, vol. 123(C), pages 296-306.

  8. Grünewald, Philipp & Cockerill, Tim & Contestabile, Marcello & Pearson, Peter, 2011. "The role of large scale storage in a GB low carbon energy future: Issues and policy challenges," Energy Policy, Elsevier, vol. 39(9), pages 4807-4815, September.

    Cited by:

    1. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    2. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    3. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
    4. Ambrosio-Albala, P. & Upham, P. & Bale, C.S.E. & Taylor, P.G., 2020. "Exploring acceptance of decentralised energy storage at household and neighbourhood scales: A UK survey," Energy Policy, Elsevier, vol. 138(C).
    5. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    6. Gangopadhyay, Anasuya & Seshadri, Ashwin K. & Patil, Balachandra, 2024. "Wind-solar-storage trade-offs in a decarbonizing electricity system," Applied Energy, Elsevier, vol. 353(PA).
    7. Cárdenas, Bruno & Swinfen-Styles, Lawrie & Rouse, James & Hoskin, Adam & Xu, Weiqing & Garvey, S.D., 2021. "Energy storage capacity vs. renewable penetration: A study for the UK," Renewable Energy, Elsevier, vol. 171(C), pages 849-867.
    8. Jianxiong Xiao & Chao Xiong & Wei Deng & Guihai Yu, 2022. "Evolution Features and Robustness of Global Photovoltaic Trade Network," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    9. Flatley, Lisa & Mackay, Robert & Waterson, Michael, 2014. "Optimal strategies for operating energy storage in an arbitrage market," The Warwick Economics Research Paper Series (TWERPS) 1048, University of Warwick, Department of Economics.
    10. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    11. Grünewald, Philipp H. & Cockerill, Timothy T. & Contestabile, Marcello & Pearson, Peter J.G., 2012. "The socio-technical transition of distributed electricity storage into future networks—System value and stakeholder views," Energy Policy, Elsevier, vol. 50(C), pages 449-457.
    12. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    13. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    14. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    15. Adeoye, Omotola & Spataru, Catalina, 2020. "Quantifying the integration of renewable energy sources in West Africa's interconnected electricity network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Rahmatallah Poudineh & Tooraj Jamasb, 2013. "Distributed Generation, Storage, Demand Response, and Energy Efficiency as Alternatives to Grid Capacity Enhancement," Working Papers EPRG 1331, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
    19. Edmunds, R.K. & Cockerill, T.T. & Foxon, T.J. & Ingham, D.B. & Pourkashanian, M., 2014. "Technical benefits of energy storage and electricity interconnections in future British power systems," Energy, Elsevier, vol. 70(C), pages 577-587.
    20. Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.

  9. Matteo Di Castelnuovo & Matthew Leach & Peter Pearson, 2008. "An analysis of spatial pricing and renewable generation in the British electricity system," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 29(1/2), pages 199-220.

    Cited by:

    1. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.

  10. O'Garra, Tanya & Mourato, Susana & Pearson, Peter, 2008. "Investigating attitudes to hydrogen refuelling facilities and the social cost to local residents," Energy Policy, Elsevier, vol. 36(6), pages 2074-2085, June.

    Cited by:

    1. Chan Young Park & Seung Heon Han & Kang-Wook Lee & Yong Myoung Lee, 2017. "Analyzing Drivers of Conflict in Energy Infrastructure Projects: Empirical Case Study of Natural Gas Pipeline Sectors," Sustainability, MDPI, vol. 9(11), pages 1-16, November.
    2. Biddinika, Muhammad Kunta & Lestari, Retno Puji & Indrawan, Bayu & Yoshikawa, Kunio & Tokimatsu, Koji & Takahashi, Fumitake, 2016. "Measuring the readability of Indonesian biomass websites: The ease of understanding biomass energy information on websites in the Indonesian language," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1349-1357.
    3. Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
    4. Kim, Heetae & Park, Eunil & Kwon, Sang Jib & Ohm, Jay Y. & Chang, Hyun Joon, 2014. "An integrated adoption model of solar energy technologies in South Korea," Renewable Energy, Elsevier, vol. 66(C), pages 523-531.
    5. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    6. Hyung-Seok Jeong & Ju-Hee Kim & Seung-Hoon Yoo, 2021. "South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    7. Huijts, N.M.A. & De Groot, J.I.M. & Molin, E.J.E. & van Wee, B., 2013. "Intention to act towards a local hydrogen refueling facility: Moral considerations versus self-interest," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 63-74.
    8. Galjak, Marko & Budić, Marina, 2024. "Public perceptions of fossil and alternative energy in Serbia: Between NIMBYism and nationalism," Energy Policy, Elsevier, vol. 190(C).
    9. Dumbrell, Nikki P. & Wheeler, Sarah Ann & Zuo, Alec & Adamson, David, 2022. "Public willingness to make trade-offs in the development of a hydrogen industry in Australia," Energy Policy, Elsevier, vol. 165(C).
    10. Huan, Ning & Yamamoto, Toshiyuki & Sato, Hitomi & Tzioutzios, Dimitrios & Yin, Haohui & Sala, Roser, 2024. "Does accident awareness affect people's risk perception of hydrogen infrastructure and information-seeking behaviour?," Applied Energy, Elsevier, vol. 364(C).
    11. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Simone Carr-Cornish & Lygia Romanach, 2014. "Differences in Public Perceptions of Geothermal Energy Technology in Australia," Energies, MDPI, vol. 7(3), pages 1-21, March.
    13. Ma, Guo & Andrews-Speed, Philip & Zhang, Jiandong, 2013. "Chinese consumer attitudes towards energy saving: The case of household electrical appliances in Chongqing," Energy Policy, Elsevier, vol. 56(C), pages 591-602.
    14. Kocsis, Tamás & Marjainé, Szerényi Zsuzsanna, 2018. "Gazdag szegények. Időráfordítási hajlandóság a környezeti javak értékelésében [The wealthy poor - "willingness to spend time" in evaluating environmental benefits]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1154-1171.
    15. Nicole M. A. Huijts & Gerdien de Vries & Eric J. E. Molin, 2019. "A positive Shift in the Public Acceptability of a Low-Carbon Energy Project After Implementation: The Case of a Hydrogen Fuel Station," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    16. Tarigan, Ari K.M. & Bayer, Stian B., 2012. "Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5535-5544.
    17. Yetano Roche, María & Mourato, Susana & Fischedick, Manfred & Pietzner, Katja & Viebahn, Peter, 2010. "Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications," Energy Policy, Elsevier, vol. 38(10), pages 5301-5310, October.

  11. Foxon, T.J. & Pearson, P.J.G., 2007. "Towards improved policy processes for promoting innovation in renewable electricity technologies in the UK," Energy Policy, Elsevier, vol. 35(3), pages 1539-1550, March.

    Cited by:

    1. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    2. Katarzyna Byrka & Arkadiusz Jedrzejewski & Katarzyna Sznajd-Weron & Rafal Weron, 2015. "Difficulty is critical: Psychological factors in modeling diffusion of green products and practices," HSC Research Reports HSC/15/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    3. Dominique Finon, 2008. "L'inadéquation du mode de subvention du photovoltaïque à sa maturité technologique," CIRED Working Papers hal-00866415, HAL.
    4. Uyarra, Elvira & Shapira, Philip & Harding, Alan, 2016. "Low carbon innovation and enterprise growth in the UK: Challenges of a place-blind policy mix," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 264-272.
    5. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2011. "Learning or Lock-in: Optimal Technology Policies to Support Mitigation," CESifo Working Paper Series 3422, CESifo.
    6. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    7. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    8. Degirmenci, Tunahan & Yavuz, Hakan, 2024. "Environmental taxes, R&D expenditures and renewable energy consumption in EU countries: Are fiscal instruments effective in the expansion of clean energy?," Energy, Elsevier, vol. 299(C).
    9. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    10. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    11. Dominique Finon, 2008. "L'inadéquation du mode de subvention du photovoltaïque à sa maturité technologique," Working Papers hal-00866415, HAL.
    12. Rogge, Karoline S. & Reichardt, Kristin, 2013. "Towards a more comprehensive policy mix conceptualization for environmental technological change: A literature synthesis," Working Papers "Sustainability and Innovation" S3/2013, Fraunhofer Institute for Systems and Innovation Research (ISI).
    13. Wei Jin & ZhongXiang Zhang, 2015. "Levelling the Playing Field: On the Missing Role of Network Externality in Designing Renewable Energy Technology Deployment Policies," Working Papers 2015.76, Fondazione Eni Enrico Mattei.
    14. Friebe, Christian A. & von Flotow, Paschen & Täube, Florian A., 2014. "Exploring technology diffusion in emerging markets – the role of public policy for wind energy," Energy Policy, Elsevier, vol. 70(C), pages 217-226.
    15. Nelson, Tim & Dodd, Tracey, 2023. "Contracts-for-Difference: An assessment of social equity considerations in the renewable energy transition," Energy Policy, Elsevier, vol. 183(C).
    16. Azam Ghezelbash & Vahid Khaligh & Seyed Hamed Fahimifard & J. Jay Liu, 2023. "A Comparative Perspective of the Effects of CO 2 and Non-CO 2 Greenhouse Gas Emissions on Global Solar, Wind, and Geothermal Energy Investment," Energies, MDPI, vol. 16(7), pages 1-20, March.
    17. Buckman, Greg, 2011. "The effectiveness of Renewable Portfolio Standard banding and carve-outs in supporting high-cost types of renewable electricity," Energy Policy, Elsevier, vol. 39(7), pages 4105-4114, July.
    18. Setiawan, Andri D. & Dewi, Marmelia P. & Jafino, Bramka Arga & Hidayatno, Akhmad, 2022. "Evaluating feed-in tariff policies on enhancing geothermal development in Indonesia," Energy Policy, Elsevier, vol. 168(C).
    19. Friedemann Polzin & Michael Migendt & Paschen von Flotow & Florian Taübe, 2015. "Public policy influence on renewable energy investments-A panel data study across OECD countries," ULB Institutional Repository 2013/197763, ULB -- Universite Libre de Bruxelles.
    20. Wang, Yunfei & Li, Jinke & O'Leary, Nigel & Shao, Jing, 2024. "Banding: A game changer in the Renewables Obligation scheme in the United Kingdom," Energy Economics, Elsevier, vol. 130(C).
    21. Rogge, Karoline S. & Reichardt, Kristin, 2016. "Policy mixes for sustainability transitions: An extended concept and framework for analysis," Research Policy, Elsevier, vol. 45(8), pages 1620-1635.
    22. Gabriel, Cle-Anne, 2016. "What is challenging renewable energy entrepreneurs in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 362-371.
    23. Bradshaw, Amanda & de Martino Jannuzzi, Gilberto, 2019. "Governing energy transitions and regional economic development: Evidence from three Brazilian states," Energy Policy, Elsevier, vol. 126(C), pages 1-11.
    24. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    25. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    26. Shao, Jing & Li, Jinke & Liu, Guy, 2021. "Vertical integration, recycling mechanism, and disadvantaged independent suppliers in the renewable obligation in the UK," Energy Economics, Elsevier, vol. 94(C).
    27. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    28. Alex Bowen, 2014. "Green growth," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 15, pages 237-251, Edward Elgar Publishing.
    29. Ashford, Nicholas A. & Hall, Ralph P., 2018. "Achieving Global Climate and Environmental Goals by Governmental Regulatory Targeting," Ecological Economics, Elsevier, vol. 152(C), pages 246-259.
    30. Tim Nelson & Tahlia Nolan & Joel Gilmore, 2022. "What’s next for the Renewable Energy Target – resolving Australia’s integration of energy and climate change policy?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 136-163, January.
    31. Chen, Xia & Fu, Qiang & Chang, Chun-Ping, 2021. "What are the shocks of climate change on clean energy investment: A diversified exploration," Energy Economics, Elsevier, vol. 95(C).
    32. Glithero, N. J. & Wilson, P. & Ramsden, S. J., 2014. "Water use implications of bioenergy cropping systems in Eastern England," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 170557, Agricultural Economics Society.
    33. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    34. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    35. Florian Kern, 2012. "The discursive politics of governing transitions towards sustainability: the UK Carbon Trust," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 15(1/2), pages 90-106.
    36. Corrocher, Nicoletta & Cappa, Elisabetta, 2020. "The Role of public interventions in inducing private climate finance: An empirical analysis of the solar energy sector," Energy Policy, Elsevier, vol. 147(C).

  12. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.

    Cited by:

    1. Mokyr, Joel, 2010. "The Contribution of Economic History to the Study of Innovation and Technical Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 11-50, Elsevier.
    2. Joachim Schleich & Bradford Mills & Elisabeth Dütschke, 2014. "A Brighter Future? Quantifying the Rebound Effect in Energy Efficient Lighting," Post-Print hal-00991732, HAL.
    3. Tooraj Jamasb & Michael Pollitt, 2007. "Incentive Regulation of Electricity Distribution Networks: Lessons of Experience from Britain," Working Papers EPRG 0701, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Pollitt, Michael G., 2012. "The role of policy in energy transitions: Lessons from the energy liberalisation era," Energy Policy, Elsevier, vol. 50(C), pages 128-137.
    5. Freire-González, Jaume & Font Vivanco, David & Puig-Ventosa, Ignasi, 2017. "Economic structure and energy savings from energy efficiency in households," Ecological Economics, Elsevier, vol. 131(C), pages 12-20.
    6. David Hendry, 2011. "Empirical Economic Model Discovery and Theory Evaluation," Economics Series Working Papers 529, University of Oxford, Department of Economics.
    7. Arthur A. van Benthem, 2015. "Energy Leapfrogging," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 93-132.
    8. Jorg PETERS & Maximiliane SIEVERT, 2017. "Impacts of Rural Electrification Revisited: The African Context," Working Paper 685bbfec-4828-4aa0-832a-4, Agence française de développement.
    9. Dirk-Jan van de Ven & Roger Fouquet, 2014. "Historical energy price shocks and their changing effects on the economy," GRI Working Papers 153, Grantham Research Institute on Climate Change and the Environment.
    10. Annika K. Jägerbrand, 2015. "New Framework of Sustainable Indicators for Outdoor LED (Light Emitting Diodes) Lighting and SSL (Solid State Lighting)," Sustainability, MDPI, vol. 7(1), pages 1-36, January.
    11. Socolow, Robert & Pacala, Stephen W. & Tol, Richard S.J., 2006. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Climate Change Modelling and Policy Working Papers 12043, Fondazione Eni Enrico Mattei (FEEM).
    12. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    13. Serrenho, André Cabrera & Sousa, Tânia & Warr, Benjamin & Ayres, Robert U. & Domingos, Tiago, 2014. "Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009," Energy, Elsevier, vol. 76(C), pages 704-715.
    14. Bensch, Gunther & Kluve, Jochen & Peters, Jörg, 2011. "Impacts of Rural Electrification in Rwanda," IZA Discussion Papers 6195, Institute of Labor Economics (IZA).
    15. Mona Chitnis, Roger Fouquet, and Steve Sorrell, 2020. "Rebound Effects for Household Energy Services in the UK," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 31-60.
    16. David Hendry, 2010. "Climate Change: Lessons for our Future from the Distant Past," Economics Series Working Papers 485, University of Oxford, Department of Economics.
    17. James D. Hamilton, 2013. "Oil prices, exhaustible resources and economic growth," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 1, pages 29-63, Edward Elgar Publishing.
    18. Severin Borenstein, 2013. "A Microeconomic Framework for Evaluating Energy Efficiency Rebound And Some Implications," NBER Working Papers 19044, National Bureau of Economic Research, Inc.
    19. Zbigniew Bohdanowicz & Beata Łopaciuk-Gonczaryk & Jarosław Kowalski & Cezary Biele, 2021. "Households’ Electrical Energy Conservation and Management: An Ecological Break-Through, or the Same Old Consumption-Growth Path?," Energies, MDPI, vol. 14(20), pages 1-21, October.
    20. Richard Green & Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, , vol. 33(3), pages 1-22, July.
    21. M. Scott Taylor & Juan Moreno Cruz, "undated". "A Spatial Approach to Energy Economics," Working Papers 2014-68, Department of Economics, University of Calgary, revised 29 Sep 2014.
    22. Hart, Rob, 2013. "Directed technological change and factor shares," Economics Letters, Elsevier, vol. 119(1), pages 77-80.
    23. Bensch, Gunther & Peters, Jörg & Sievert, Maximiliane, 2012. "Fear of the Dark? – How Access to Electric Lighting Affects Security Attitudes and Nighttime Activities in Rural Senegal," Ruhr Economic Papers 369, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    24. Cabeza, Luisa F. & Urge-Vorsatz, Diana & McNeil, Michael A. & Barreneche, Camila & Serrano, Susana, 2014. "Investigating greenhouse challenge from growing trends of electricity consumption through home appliances in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 188-193.
    25. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    26. James D. Hamilton, 2012. "Oil Prices, Exhaustible Resources, and Economic Growth," NBER Working Papers 17759, National Bureau of Economic Research, Inc.
    27. Esteve, Vicente & Tamarit, Cecilio, 2012. "Is there an environmental Kuznets curve for Spain? Fresh evidence from old data," Economic Modelling, Elsevier, vol. 29(6), pages 2696-2703.
    28. Roger Fouquet, 2018. "Consumer Surplus from Energy Transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    29. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    30. Siddique, Hafiz Muhammad Abubakar & Majeed, Muhammad Tariq, 2015. "Energy consumption, economic growth, trade and financial development nexus in south asia," MPRA Paper 71245, University Library of Munich, Germany, revised 2015.
    31. Jörg Peters & Maximiliane Sievert, 2016. "Impacts of rural electrification revisited – the African context," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 8(3), pages 327-345, July.
    32. Lyytimäki, Jari, 2013. "Nature’s nocturnal services: Light pollution as a non-recognised challenge for ecosystem services research and management," Ecosystem Services, Elsevier, vol. 3(C), pages 44-48.
    33. Naima Farah & John R Boyce, "undated". "Elephants and Mammoths," Working Papers 2015-26, Department of Economics, University of Calgary, revised 28 Jan 2016.
    34. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    35. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    36. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    37. Hart, Rob, 2018. "Rebound, directed technological change, and aggregate demand for energy," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 218-234.
    38. Franceschini, Simone & Borup, Mads & Rosales-Carreón, Jesús, 2018. "Future indoor light and associated energy consumption based on professionals' visions: A practice- and network-oriented analysis," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 1-11.
    39. Freire González, Jaume, 2010. "Empirical evidence of direct rebound effect in Catalonia," Energy Policy, Elsevier, vol. 38(5), pages 2309-2314, May.
    40. Castle, Jennifer L. & Hendry, David F., 2024. "Five sensitive intervention points to achieve climate neutrality by 2050, illustrated by the UK," Renewable Energy, Elsevier, vol. 226(C).
    41. Bajmócy, Zoltán & Málovics, György, 2011. "Az ökológiai hatékonyságot növelő innovációk hatása a fenntarthatóságra. Az IPAT formula dinamizálása [The effects of eco-innovations on sustainability. Modifying the IPAT]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 890-904.
    42. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    43. David F. Hendry, 2020. "First in, First out: Econometric Modelling of UK Annual CO_2 Emissions, 1860–2017," Economics Papers 2020-W02, Economics Group, Nuffield College, University of Oxford.
    44. Rutter, Paul & Keirstead, James, 2012. "A brief history and the possible future of urban energy systems," Energy Policy, Elsevier, vol. 50(C), pages 72-80.
    45. Hannon, Matthew J. & Foxon, Timothy J. & Gale, William F., 2013. "The co-evolutionary relationship between Energy Service Companies and the UK energy system: Implications for a low-carbon transition," Energy Policy, Elsevier, vol. 61(C), pages 1031-1045.
    46. Blum, Bianca & Hübner, Julian & Milde, Adrian & Neumärker, Karl Justus Bernhard, 2018. "On the evidence of rebound effects in the lighting sector: Implications for promoting LED lighting," The Constitutional Economics Network Working Papers 05-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    47. Polzin, Friedemann & Nolden, Colin & von Flotow, Paschen, 2018. "Drivers and barriers for municipal retrofitting activities – Evidence from a large-scale survey of German local authorities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 99-108.
    48. Arapostathis, Stathis & Carlsson-Hyslop, Anna & Pearson, Peter J G & Thornton, Judith & Gradillas, Maria & Laczay, Scott & Wallis, Suzanne, 2013. "Governing transitions: Cases and insights from two periods in the history of the UK gas industry," Energy Policy, Elsevier, vol. 52(C), pages 25-44.
    49. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    50. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    51. Magee, Christopher L. & Devezas, Tessaleno C., 2017. "A simple extension of dematerialization theory: Incorporation of technical progress and the rebound effect," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 196-205.
    52. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    53. Haas, Reinhard & Nakicenovic, Nebojsa & Ajanovic, Amela & Faber, Thomas & Kranzl, Lukas & Müller, Andreas & Resch, Gustav, 2008. "Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies," Energy Policy, Elsevier, vol. 36(11), pages 4012-4021, November.
    54. Laura Felício & Sofia T. Henriques & André Serrenho & Tiago Domingos & Tânia Sousa, 2019. "Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014," Energies, MDPI, vol. 12(3), pages 1-22, February.
    55. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    56. Yan Zhao & Vince McDonell & Scott Samuelsen, 2022. "Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations," Energies, MDPI, vol. 15(10), pages 1-50, May.
    57. Peter A. O'Connor & Cutler J. Cleveland, 2014. "U.S. Energy Transitions 1780–2010," Energies, MDPI, vol. 7(12), pages 1-39, November.
    58. Lucas W Davis, 2017. "Evidence of a decline in electricity use by U.S. households," Economics Bulletin, AccessEcon, vol. 37(2), pages 1098-1105.
    59. Louis-Gaëtan Giraudet & Antoine Missemer, 2023. "The History of Energy Efficiency in Economics: Breakpoints and Regularities," Post-Print halshs-02301636, HAL.
    60. Miguel Palma & Tânia Sousa & Zeus Guevara, 2016. "How Much Detail Should We Use to Compute Societal Aggregated Exergy Efficiencies?," Energies, MDPI, vol. 9(5), pages 1-13, May.
    61. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
    62. Harvey, L.D. Danny, 2014. "Global climate-oriented building energy use scenarios," Energy Policy, Elsevier, vol. 67(C), pages 473-487.
    63. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    64. Matthew Kuperus Heun & Zeke Marshall & Emmanuel Aramendia & Paul E. Brockway, 2020. "The Energy and Exergy of Light with Application to Societal Exergy Analysis," Energies, MDPI, vol. 13(20), pages 1-24, October.
    65. Roger Fouquet, 2015. "Lessons from energy history for climate policy," GRI Working Papers 209, Grantham Research Institute on Climate Change and the Environment.
    66. Timothy J. Foxon & Jonathan Köhler & Jonathan Michie & Christine Oughton, 2013. "Towards a new complexity economics for sustainability," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 37(1), pages 187-208.
    67. Kong, Li & Mu, Xianzhong & Hu, Guangwen & Tu, Chuang, 2023. "Will energy efficiency improvements reduce energy consumption? Perspective of rebound effect and evidence from beijing," Energy, Elsevier, vol. 263(PA).
    68. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    69. Franco Ruzzenenti & Andreas A. Papandreou, 2015. "Effects of fossil fuel prices on the transition to a low-carbon economy," Working papers wpaper89, Financialisation, Economy, Society & Sustainable Development (FESSUD) Project.
    70. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2023. "Human capital and energy consumption: Six centuries of evidence from the United Kingdom," Energy Economics, Elsevier, vol. 117(C).
    71. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.
    72. Andreea ZAMFIR, 2013. "Modern Services For Developing Renewable Energy In The European Union," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 5(3), pages 31-42, September.
    73. Lescaroux, François, 2011. "Dynamics of final sectoral energy demand and aggregate energy intensity," Energy Policy, Elsevier, vol. 39(1), pages 66-82, January.

  13. Roger Fouquet & Peter Pearson, 2003. "Five Centuries of Energy Prices," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 4(3), pages 93-119, July.

    Cited by:

    1. Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.
    2. Dirk-Jan van de Ven & Roger Fouquet, 2014. "Historical energy price shocks and their changing effects on the economy," GRI Working Papers 153, Grantham Research Institute on Climate Change and the Environment.
    3. Socolow, Robert & Pacala, Stephen W. & Tol, Richard S.J., 2006. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Climate Change Modelling and Policy Working Papers 12043, Fondazione Eni Enrico Mattei (FEEM).
    4. Csereklyei, Zszsanna & Varas, Mar Rubio & Stern, David I., 2014. "Energy and Economic Growth: The Stylized Facts," Working Papers 249502, Australian National University, Centre for Climate Economics & Policy.
    5. Derek Lemoine, 2018. "General Equilibrium Rebound from Energy Efficiency Innovation," NBER Working Papers 25172, National Bureau of Economic Research, Inc.
    6. Franco Ruzzenenti & Andreas A. Papandreou, 2015. "Effects of fossil fuel prices on the transition to a low-carbon economy," Working papers wpaper89, Financialisation, Economy, Society & Sustainable Development (FESSUD) Project.
    7. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.

  14. T. J. Foxon & G. Mcilkenny & D. Gilmour & C. Oltean-Dumbrava & N. Souter & R. Ashley & D. Butler & P. Pearson & P. Jowitt & J. Moir, 2002. "Sustainability Criteria for Decision Support in the UK Water Industry," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 45(2), pages 285-301.

    Cited by:

    1. Khannoussi, Arwa & Meyer, Patrick & Chaubet, Aurore, 2023. "A multi-criteria decision aiding approach for upgrading public sewerage systems and its application to the city of Brest," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    2. Jiean Ling & Eve Germain & Richard Murphy & Devendra Saroj, 2021. "Designing a Sustainability Assessment Framework for Selecting Sustainable Wastewater Treatment Technologies in Corporate Asset Decisions," Sustainability, MDPI, vol. 13(7), pages 1-21, March.
    3. Jonas Ammenberg & Sofia Dahlgren, 2021. "Sustainability Assessment of Public Transport, Part I—A Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    4. Saleh, Layla & Mezher, Toufic, 2021. "Techno-economic analysis of sustainability and externality costs of water desalination production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Yüksel, Ibrahim, 2010. "Hydropower for sustainable water and energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 462-469, January.
    6. Nazli Aydin & Larry Mays & Theo Schmitt, 2014. "Technical and Environmental Sustainability Assessment of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4699-4713, October.
    7. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    8. Ismail Erol & Nigar Cakar & Derya Erel & Ramazan Sari, 2009. "Sustainability in the Turkish retailing industry," Sustainable Development, John Wiley & Sons, Ltd., vol. 17(1), pages 49-67.
    9. Ibuchim Cyril Ogunkah & Junli Yang, 2013. "Factors Affecting the Selection of Low-Cost Green Building Materials in Housing Construction," International Journal of Sciences, Office ijSciences, vol. 2(09), pages 41-75, September.
    10. Marcin K. Widomski & Anna Musz-Pomorska, 2023. "Sustainable Development of Rural Areas in Poland since 2004 in the Light of Sustainability Indicators," Land, MDPI, vol. 12(2), pages 1-29, February.
    11. Umberto Vitiello & Antonio Salzano & Domenico Asprone & Marco Di Ludovico & Andrea Prota, 2016. "Life-Cycle Assessment of Seismic Retrofit Strategies Applied to Existing Building Structures," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    12. Stefan Geyler & Norman Bedtke & Erik Gawel, 2019. "Sustainable Stormwater Management in Existing Settlements—Municipal Strategies and Current Governance Trends in Germany," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    13. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2024. "A Sustainable Water Resources Management Assessment Framework (SWRM-AF) for Arid and Semi-Arid Regions—Part 1: Developing the Conceptual Framework," Sustainability, MDPI, vol. 16(7), pages 1-43, March.
    14. Iyad Alawaysheh & Imad Alsyouf & Zain El-Abideen Tahboub & Hossam S. Almahasneh, 2020. "Selecting maintenance practices based on environmental criteria: a comparative analysis of theory and practice in the public transport sector in UAE/DUBAI," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1133-1155, December.
    15. Ahmed Mohammed Nasr & Bakr Hashem Bayoumi & Wael Mohammed Yousef, 2023. "The Urban Sustainability of the Egyptian Capital," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    16. Jasiński, Dominik & Cinelli, Marco & Dias, Luis C. & Meredith, James & Kirwan, Kerry, 2018. "Assessing supply risks for non-fossil mineral resources via multi-criteria decision analysis," Resources Policy, Elsevier, vol. 58(C), pages 150-158.
    17. Palme, Ulrika & Lundin, Margareta & Tillman, Anne-Marie & Molander, Sverker, 2005. "Sustainable development indicators for wastewater systems – researchers and indicator users in a co-operative case study," Resources, Conservation & Recycling, Elsevier, vol. 43(3), pages 293-311.
    18. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.

  15. M. C. Grimston & V. Karakoussis & R. Fouquet & R. van der Vorst & P. Pearson & M. Leach, 2001. "The European and global potential of carbon dioxide sequestration in tackling climate change," Climate Policy, Taylor & Francis Journals, vol. 1(2), pages 155-171, June.

    Cited by:

    1. Sven Bode & Martina Jung, 2006. "Carbon dioxide capture and storage—liability for non-permanence under the UNFCCC," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 6(2), pages 173-186, June.
    2. Renner, Marie, 2014. "Carbon prices and CCS investment: A comparative study between the European Union and China," Energy Policy, Elsevier, vol. 75(C), pages 327-340.
    3. Juergen Dietz & Peter Michaelis, 2004. "Incentives for Innovation in Pollution Control: Emission Standards Revisited," Discussion Paper Series 263, Universitaet Augsburg, Institute for Economics.
    4. Marie Renner, 2014. "Carbon prices and CCS investment: comparative study between the European Union and China," Working Papers 1402, Chaire Economie du climat.

  16. Pena-Torres, Julio & Pearson, Peter J. G., 2000. "Carbon abatement and new investment in liberalised electricity markets: a nuclear revival in the UK?," Energy Policy, Elsevier, vol. 28(2), pages 115-135, February.

    Cited by:

    1. Chignell, Simon & Gross, Robert J.K., 2013. "Not locked-in? The overlooked impact of new gas-fired generation investment on long-term decarbonisation in the UK," Energy Policy, Elsevier, vol. 52(C), pages 699-705.
    2. Pablo Ponce & Cristiana Oliveira & Viviana Álvarez & María de la Cruz del Río-Rama, 2020. "The Liberalization of the Internal Energy Market in the European Union: Evidence of Its Influence on Reducing Environmental Pollution," Energies, MDPI, vol. 13(22), pages 1-17, November.
    3. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
    4. Nakata, T, 2002. "Analysis of the impacts of nuclear phase-out on energy systems in Japan," Energy, Elsevier, vol. 27(4), pages 363-377.
    5. Hepburn, Cameron & Koundouri, Phoebe & Panopoulou, Ekaterini & Pantelidis, Theologos, 2009. "Social discounting under uncertainty: A cross-country comparison," Journal of Environmental Economics and Management, Elsevier, vol. 57(2), pages 140-150, March.
    6. Michanek, Gabriel & Söderholm, Patrik, 2009. "Licensing of nuclear power plants: The case of Sweden in an international comparison," Energy Policy, Elsevier, vol. 37(10), pages 4086-4097, October.

  17. Roger Fouquet & Peter J. G. Pearson, 1998. "A Thousand Years of Energy Use in the United Kingdom," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-41.

    Cited by:

    1. Moreno-Cruz, Juan & Taylor, M. Scott, 2017. "An Energy-centric Theory of Agglomeration," Working papers 2017/01, Faculty of Business and Economics - University of Basel.
    2. Vásquez Cordano, Arturo L. & Zellou, Abdel M., 2020. "Super cycles in natural gas prices and their impact on Latin American energy and environmental policies," Resources Policy, Elsevier, vol. 65(C).
    3. Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," GRI Working Papers 267, Grantham Research Institute on Climate Change and the Environment.
    4. Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.
    5. Ravshonbek Otojanov and Roger Fouquet, 2018. "Factor prices and induced technical change in the Industrial Revolution," Working Papers 92, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    6. Hunt, Lester C. & Ninomiya, Yasushi, 2005. "Primary energy demand in Japan: an empirical analysis of long-term trends and future CO2 emissions," Energy Policy, Elsevier, vol. 33(11), pages 1409-1424, July.
    7. Roger Fouquet, 2011. "The Demand for Environmental Quality in Driving Transitions to Low Polluting Energy Sources," Working Papers 2011-11, BC3.
    8. Eleni Sardianou & Vasilis Nikou & Ioannis Kostakis, 2023. "Harmonizing Sustainability Goals: Empirical Insights into Climate Change Mitigation and Circular Economy Strategies in Selected European Countries with SDG13 Framework," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    9. Dirk-Jan van de Ven & Roger Fouquet, 2014. "Historical energy price shocks and their changing effects on the economy," GRI Working Papers 153, Grantham Research Institute on Climate Change and the Environment.
    10. Socolow, Robert & Pacala, Stephen W. & Tol, Richard S.J., 2006. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Climate Change Modelling and Policy Working Papers 12043, Fondazione Eni Enrico Mattei (FEEM).
    11. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    12. Rubio, M.d.Mar & Folchi, Mauricio, 2012. "Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America," Energy Policy, Elsevier, vol. 50(C), pages 50-61.
    13. Rühl, Christof & Appleby, Paul & Fennema, Julian & Naumov, Alexander & Schaffer, Mark, 2012. "Economic development and the demand for energy: A historical perspective on the next 20 years," Energy Policy, Elsevier, vol. 50(C), pages 109-116.
    14. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    15. Wouter Ryckbosch & Wout Saelens, 2023. "Fuelling the urban economy: A comparative study of energy in the Low Countries, 1600–1850," Economic History Review, Economic History Society, vol. 76(1), pages 221-256, February.
    16. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    17. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.
    18. Esteve, Vicente & Tamarit, Cecilio, 2012. "Is there an environmental Kuznets curve for Spain? Fresh evidence from old data," Economic Modelling, Elsevier, vol. 29(6), pages 2696-2703.
    19. Missbach, Leonard & Steckel, Jan Christoph & Renner, Sebastian & Kraus, Sebastian, 2024. "Coal-fired power plants and industrial development," EconStor Preprints 300209, ZBW - Leibniz Information Centre for Economics.
    20. Calel, Raphael, 2011. "Climate change and carbon markets: a panoramic history," LSE Research Online Documents on Economics 37397, London School of Economics and Political Science, LSE Library.
    21. Fouquet, Roger, 2010. "The slow search for solutions: Lessons from historical energy transitions by sector and service," Energy Policy, Elsevier, vol. 38(11), pages 6586-6596, November.
    22. Oscar Gonzalo Manrique-Díaz & Diego Fernando Lemus-Polanía, 2020. "Nonlinear optimization method for quantifying the contribution of electricity in the Colombian economic growth, 1925-1997," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 93, pages 65-100, Julio-Dic.
    23. Turnheim, Bruno & Geels, Frank W., 2012. "Regime destabilisation as the flipside of energy transitions: Lessons from the history of the British coal industry (1913–1997)," Energy Policy, Elsevier, vol. 50(C), pages 35-49.
    24. Rutter, Paul & Keirstead, James, 2012. "A brief history and the possible future of urban energy systems," Energy Policy, Elsevier, vol. 50(C), pages 72-80.
    25. Paolo Malanima, 2020. "The limiting factor: energy, growth, and divergence, 1820–1913," Economic History Review, Economic History Society, vol. 73(2), pages 486-512, May.
    26. Arapostathis, Stathis & Carlsson-Hyslop, Anna & Pearson, Peter J G & Thornton, Judith & Gradillas, Maria & Laczay, Scott & Wallis, Suzanne, 2013. "Governing transitions: Cases and insights from two periods in the history of the UK gas industry," Energy Policy, Elsevier, vol. 52(C), pages 25-44.
    27. Rubio, M. del Mar & Tafunell, Xavier, 2014. "Latin American hydropower: A century of uneven evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 323-334.
    28. Radoslaw Stefanski, 2013. "Online Appendix to "Structural Transformation and the Oil Price"," Online Appendices 12-45, Review of Economic Dynamics.
    29. Míguez, J.L. & López-González, L.M. & Sala, J.M. & Porteiro, J. & Granada, E. & Morán, J.C. & Juárez, M.C., 2006. "Review of compliance with EU-2010 targets on renewable energy in Galicia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 225-247, June.
    30. Krausmann, Fridolin & Haberl, Helmut, 2002. "The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830-1995," Ecological Economics, Elsevier, vol. 41(2), pages 177-201, May.
    31. Malanima, Paolo, 2021. "Energy, productivity and structural growth. The last two centuries," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 54-65.
    32. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    33. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    34. John R. Boyce, 2013. "Prediction and Inference in the Hubbert-Deffeyes Peak Oil Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    35. Muhammad Awais Gulzar & Haroon Asghar & Jinsoo Hwang & Waseem Hassan, 2020. "China’s Pathway towards Solar Energy Utilization: Transition to a Low-Carbon Economy," IJERPH, MDPI, vol. 17(12), pages 1-11, June.
    36. Gingrich, Simone, 2011. "Foreign trade and early industrialisation in the Habsburg Monarchy and the United Kingdom -- Two extremes in comparison," Ecological Economics, Elsevier, vol. 70(7), pages 1280-1288, May.
    37. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2023. "Human capital and energy consumption: Six centuries of evidence from the United Kingdom," Energy Economics, Elsevier, vol. 117(C).
    38. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    39. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.

  18. Fouquet, Roger & Pearson, Peter & Hawdon, David & Robinson, Colin & Stevens, Paul, 1997. "The future of UK final user energy demand," Energy Policy, Elsevier, vol. 25(2), pages 231-240, February.

    Cited by:

    1. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    2. Bhaskara Rao, B. & Rao, Gyaneshwar, 2009. "Cointegration and the demand for gasoline," Energy Policy, Elsevier, vol. 37(10), pages 3978-3983, October.
    3. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    4. Roger Fouquet & Peter J.G. Pearson, 2012. "The Long Run Demand for Lighting:Elasticities and Rebound Effects in Different Phases of Economic Development," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    5. Haar, Laura N. & Haar, Lawrence, 2006. "Policy-making under uncertainty: Commentary upon the European Union Emissions Trading Scheme," Energy Policy, Elsevier, vol. 34(17), pages 2615-2629, November.
    6. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    7. Lester C Hunt & Guy Judge & Yasushi Ninomiya, 2003. "Modelling Underlying Energy Demand Trends," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 105, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    8. Roger Fouquet, 2012. "Trends in Income and Price Elasticities of Transport Demand (1850-2010)," Working Papers 2012-01, BC3.
    9. Polemis, Michael L., 2006. "Empirical assessment of the determinants of road energy demand in Greece," Energy Economics, Elsevier, vol. 28(3), pages 385-403, May.
    10. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Bjerregaard, Casper & Møller, Niels Framroze, 2022. "The influence of electricity prices on saving electricity in production: Automated multivariate time-series analyses for 99 Danish trades and industries," Energy Economics, Elsevier, vol. 107(C).
    12. Türkekul, Berna & UnakItan, Gökhan, 2011. "A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture," Energy Policy, Elsevier, vol. 39(5), pages 2416-2423, May.
    13. Kulshreshtha, Mudit & Parikh, Jyoti K., 2000. "Modeling demand for coal in India: vector autoregressive models with cointegrated variables," Energy, Elsevier, vol. 25(2), pages 149-168.
    14. Ferreira, Paula & Soares, Isabel & Araujo, Madalena, 2005. "Liberalisation, consumption heterogeneity and the dynamics of energy prices," Energy Policy, Elsevier, vol. 33(17), pages 2244-2255, November.
    15. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    16. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.
    17. Lester C. Hunt & Guy Judge & Yashushi Ninomiya, 2000. "Modelling Technical Progress: An Application of the Stochastic Trend Model to UK Energy Demand," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 99, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    18. Erdogdu, Erkan, 2005. "Energy market reforms in Turkey: An economic analysis," MPRA Paper 26929, University Library of Munich, Germany.
    19. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    20. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
    21. Ergun Yukseltan & Ahmet Yucekaya & Ayse Humeyra Bilge & Esra Agca Aktunc, 2020. "Forecasting Models for Daily Natural Gas Consumption Considering Periodic Variations and Demand Segregation," Papers 2003.13385, arXiv.org.
    22. Møller, Niels Framroze, 2015. "Energy Demand, Substitution and a Potential for Electrification: An econometric analysis of eight Danish subsectors," MPRA Paper 69931, University Library of Munich, Germany.
    23. Møller, Niels Framroze, 2017. "Energy demand, substitution and environmental taxation: An econometric analysis of eight subsectors of the Danish economy," Energy Economics, Elsevier, vol. 61(C), pages 97-109.
    24. Fatai, K & Oxley, Les & Scrimgeour, F.G, 2004. "Modelling the causal relationship between energy consumption and GDP in New Zealand, Australia, India, Indonesia, The Philippines and Thailand," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 431-445.

  19. Peter J. G. Pearson & Roger Fouquet, 1996. "Energy Efficiency, Economic Efficiency and Future CO2 Emissions from the Developing World," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 135-160.

    Cited by:

    1. AGUIR BARGAOUI, Saoussen, 2019. "Carbon dioxide emissions mitigation strategies’ performance," MPRA Paper 103853, University Library of Munich, Germany.
    2. Qianqian Wu & Rong Wang, 2022. "Exploring the Role of Environmental Regulation and Fiscal Decentralization in Regional Energy Efficiency in the Context of Global Climate," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    3. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    4. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    5. Malanima, Paolo, 2024. "International inequality in energy use and CO2 emissions (1820–2020)," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 233-244.
    6. Debyani Ghosh, 2008. "Renewable Energy Strategies for Indian Power Sector," Working Papers id:1715, eSocialSciences.
    7. Christian Ifeanyi ENETE & Michael Oloyede ALABI, 2011. "Potential Impacts of Global Climate Change on Power and Energy Generation," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(6), pages 1-14, October.
    8. Nepal, Rabindra & Musibau, Hammed Oluwaseyi & Jamasb, Tooraj, 2021. "Energy consumption as an indicator of energy efficiency and emissions in the European Union: A GMM based quantile regression approach," Energy Policy, Elsevier, vol. 158(C).

  20. Hawdon, David & Pearson, Peter, 1995. "Input-output simulations of energy, environment, economy interactions in the UK," Energy Economics, Elsevier, vol. 17(1), pages 73-86, January.

    Cited by:

    1. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    2. Lv, J. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Li, X. & Li, Y., 2022. "Planning energy economy and eco-environment nexus system under uncertainty: A copula-based stochastic multi-level programming method," Applied Energy, Elsevier, vol. 312(C).
    3. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    4. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    5. Cansino, J.M. & Cardenete, M.A. & Ordóñez, M. & Román, R., 2012. "Economic analysis of greenhouse gas emissions in the Spanish economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6032-6039.
    6. Arbex, Marcelo & Perobelli, Fernando S., 2010. "Solow meets Leontief: Economic growth and energy consumption," Energy Economics, Elsevier, vol. 32(1), pages 43-53, January.
    7. Murthy, N. S. & Panda, Manoj & Parikh, Jyoti, 1997. "Economic development, poverty reduction and carbon emissions in India," Energy Economics, Elsevier, vol. 19(3), pages 327-354, July.
    8. Llop, Maria & Pié, Laia, 2008. "Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia," Energy Policy, Elsevier, vol. 36(5), pages 1642-1648, May.
    9. Perrels, Adriaan & Weber, Christoph, 2000. "Modelling Impacts of Lifestyle on Energy Demand and Related Emissions," Discussion Papers 228, VATT Institute for Economic Research.
    10. Chang, Yih F & Lin, Sue J, 1998. "Structural decomposition of industrial CO2 emission in Taiwan: an input-output approach," Energy Policy, Elsevier, vol. 26(1), pages 5-12, January.
    11. Sung-In Na, 2000. "Input-output analysis of CO 2 emissions for the industrial sector in Korea," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(3), pages 311-333, September.
    12. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    13. Velazquez, Esther, 2006. "An input-output model of water consumption: Analysing intersectoral water relationships in Andalusia," Ecological Economics, Elsevier, vol. 56(2), pages 226-240, February.
    14. Morilla, Carmen Rodriguez & Diaz-Salazar, Gaspar Llanes & Cardenete, M. Alejandro, 2007. "Economic and environmental efficiency using a social accounting matrix," Ecological Economics, Elsevier, vol. 60(4), pages 774-786, February.
    15. Franco, Marco Paulo Vianna & Souza, Carla Cristina Aguilar de & Carvalho, Terciane Sabadini & Leal Filho, Raimundo de Sousa & Morais, Reinaldo Carvalho de, 2020. "Carbon Emissions from Fuel Combustion in the Economy of the State of Minas Gerais, Brazil (2005-2016)," Revista Brasileira de Estudos Regionais e Urbanos, Associação Brasileira de Estudos Regionais e Urbanos (ABER), vol. 14(3), pages 469-491.
    16. Haqiqi, Iman & Shahi, Zahra & Ismaili, Mahdi, 2017. "Impact of Cash Subsidy Transfer in a Nonlinear Programming Model for Economic Input-Output Analysis," MPRA Paper 95783, University Library of Munich, Germany.
    17. Yabe, Nobuko, 2004. "An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995," Energy Policy, Elsevier, vol. 32(5), pages 595-610, March.
    18. Esther Velazquez Alonso, 2003. "Analyzing Intersectorial Water Relationships by means of Graph Theory," ERSA conference papers ersa03p256, European Regional Science Association.
    19. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    20. Sung-In Na, 2000. "Input-output analysis of CO2 emissions for the industrial sector in Korea," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(3), pages 311-333, September.
    21. Minihan, Erin S. & Wu, Ziping, 2012. "Economic structure and strategies for greenhouse gas mitigation," Energy Economics, Elsevier, vol. 34(1), pages 350-357.
    22. Moreno, Blanca & López, Ana Jesús, 2008. "The effect of renewable energy on employment. The case of Asturias (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 732-751, April.
    23. Wei Yang & Junnian Song & Yoshiro Higano & Jie Tang, 2015. "An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution," Sustainability, MDPI, vol. 7(2), pages 1-24, February.
    24. Fu, Z.H. & Xie, Y.L. & Li, W. & Lu, W.T. & Guo, H.C., 2017. "An inexact multi-objective programming model for an economy-energy-environment system under uncertainty: A case study of Urumqi, China," Energy, Elsevier, vol. 126(C), pages 165-178.
    25. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    26. VELÁZQUEZ ALONSO Esther, 2010. "An Input-Output Model of Water Consumption: Analysing Intersectoral Water Relationships in Andalusia," EcoMod2003 330700149, EcoMod.
    27. Wulin Wang & Jiao Gong & Wenyue Yang & Jingyu Zeng, 2022. "The Ecology-Economy-Transport Nexus: Evidence from Fujian Province, China," Agriculture, MDPI, vol. 12(2), pages 1-17, January.
    28. Chen, Weiming & Zhang, Zhenjun & Chen, Kaiyuan, 2023. "Inter-regional economic-environmental correlation effects of power sector in China," Energy, Elsevier, vol. 278(C).
    29. C. Oliveira & D. Coelho & C. H. Antunes, 2016. "Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: a review," Annals of Operations Research, Springer, vol. 247(2), pages 471-502, December.
    30. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    31. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    32. Konan, Denise Eby & Chan, Hing Ling, 2010. "Greenhouse gas emissions in Hawai[modifier letter turned comma]i: Household and visitor expenditure analysis," Energy Economics, Elsevier, vol. 32(1), pages 210-219, January.
    33. Nasseri, Iman & Assané, Djeto & Konan, Denise Eby, 2015. "While visitors conserve, residents splurge: Patterns and changes in energy consumption, 1997-2007," Energy Economics, Elsevier, vol. 49(C), pages 282-292.
    34. Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.
    35. Lenzen, Manfred, 2003. "Environmentally important paths, linkages and key sectors in the Australian economy," Structural Change and Economic Dynamics, Elsevier, vol. 14(1), pages 1-34, March.
    36. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
    37. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    38. Chen, Z.M. & Chen, G.Q., 2011. "An overview of energy consumption of the globalized world economy," Energy Policy, Elsevier, vol. 39(10), pages 5920-5928, October.
    39. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    40. Carvalho, Terciane Sabadini & Santiago, Flaviane Souza & Perobelli, Fernando Salgueiro, 2013. "International trade and emissions: The case of the Minas Gerais state — 2005," Energy Economics, Elsevier, vol. 40(C), pages 383-395.
    41. Rashid Latief & Yusheng Kong & Yuanyuan Peng & Sohail Ahmad Javeed, 2020. "Conceptualizing Pathways of Sustainable Development in the Union for the Mediterranean Countries with an Empirical Intersection of Energy Consumption and Economic Growth," IJERPH, MDPI, vol. 17(15), pages 1-20, August.
    42. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    43. Das, Aparna & Paul, Saikat Kumar, 2013. "Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07," Energy Policy, Elsevier, vol. 53(C), pages 27-40.
    44. Esther Velázquez Alonso, 2003. "Modelo Input-Output de Agua. Análisis de las relaciones intersectoriales de agua en Andalucía," Economic Working Papers at Centro de Estudios Andaluces E2003/01, Centro de Estudios Andaluces.
    45. San Cristóbal, José Ramón, 2012. "A goal programming model for environmental policy analysis: Application to Spain," Energy Policy, Elsevier, vol. 43(C), pages 303-307.
    46. Llop Llop, Maria & Pié Dols, Laia, 2007. "Economic impact of alternative policy measures implemented on the energy activities of the Catalan production system: an input-output analysis," Working Papers 2072/5319, Universitat Rovira i Virgili, Department of Economics.
    47. Bah, Muhammad Maladoh & Saari, M. Yusof, 2020. "Quantifying the impacts of energy price reform on living expenses in Saudi Arabia," Energy Policy, Elsevier, vol. 139(C).
    48. Nikolaos Rodousakis & George Soklis & Theodore Tsekeris, 2022. "A Supply and Use Model for Estimating the Contribution of Costs to Energy Prices," Energies, MDPI, vol. 15(19), pages 1-10, September.
    49. Fan, Min & Zhou, Yun & Lu, Zhixi & Gao, Sen, 2024. "Fintech's impact on green productivity in China: Role of fossil fuel energy structure, environmental regulations, government expenditure, and R&D investment," Resources Policy, Elsevier, vol. 91(C).
    50. Tomasz Rokicki & Aleksandra Perkowska & Bogdan Klepacki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski, 2021. "Changes in Energy Consumption in Agriculture in the EU Countries," Energies, MDPI, vol. 14(6), pages 1-21, March.
    51. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    52. Joseph Harrington & J. Murphy & M. Coleman & D. Jordan & G. Szacsuri, 2016. "Financial modelling and analysis of the management of dredged marine sediments – development of a decision support tool," Journal of Shipping and Trade, Springer, vol. 1(1), pages 1-10, December.
    53. Esther Velázquez Alonso, 2003. "La Teoría de Grafos aplicada al estudio del consumo sectorial de agua en Andalucía," Economic Working Papers at Centro de Estudios Andaluces E2003/15, Centro de Estudios Andaluces.
    54. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
    55. Oliveira, C. & Coelho, D. & Pereira da Silva, P. & Antunes, C.H., 2013. "How many jobs can the RES-E sectors generate in the Portuguese context?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 444-455.
    56. Kainuma, M. & Matsuoka, Y. & Morita, T., 2000. "Estimation of embodied CO2 emissions by general equilibrium model," European Journal of Operational Research, Elsevier, vol. 122(2), pages 392-404, April.

  21. Pearson, P. J. G. & Stevens, P., 1989. "The fuelwood crisis and the environment : Problems, policies and instruments," Energy Policy, Elsevier, vol. 17(2), pages 132-137, April.

    Cited by:

    1. Arabatzis, Garyfallos & Petridis, Konstantinos & Galatsidas, Spyros & Ioannou, Konstantinos, 2013. "A demand scenario based fuelwood supply chain: A conceptual model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 687-697.

  22. P J G Pearson, 1989. "Proactive Energy-Environment Policy Strategies: A Role for Input — Output Analysis?," Environment and Planning A, , vol. 21(10), pages 1329-1348, October.

    Cited by:

    1. Toman, Michael & Lile, Ronald D. & King, Dennis M., 1998. "Assessing Sustainability: Some Conceptual and Empirical Challenges," Discussion Papers 10756, Resources for the Future.
    2. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    3. Mark Esposito & Lloyd C. Williams, 2010. "Moving Beyond Human and Organizational Incongruence," Working paper serie RMT - Grenoble Ecole de Management hal-00542258, HAL.
    4. Mark Esposito & Lloyd C. Williams, 2010. "Moving Beyond Human and Organizational Incongruence," Working Papers hal-00542258, HAL.
    5. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    6. Zhang, ZhongXiang & Folmer, Henk, 1998. "Economic modelling approaches to cost estimates for the control of carbon dioxide emissions1," Energy Economics, Elsevier, vol. 20(1), pages 101-120, February.

  23. P.J.G. Pearson & P.J. Stevens, 1984. "Integrated Policies for Traditional and Commercial Energy in Developing Countries," Development Policy Review, Overseas Development Institute, vol. 2(2), pages 131-153, November.

    Cited by:

    1. Paul Stevens, 2016. "The role of oil and gas in the development of the global economy," WIDER Working Paper Series wp-2016-175, World Institute for Development Economic Research (UNU-WIDER).

Chapters

    Sorry, no citations of chapters recorded.

Books

    Sorry, no citations of books recorded.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.