IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v63y2013icp230-243.html
   My bibliography  Save this article

Developing pathways for energy storage in the UK using a coevolutionary framework

Author

Listed:
  • Taylor, Peter G.
  • Bolton, Ronan
  • Stone, Dave
  • Upham, Paul

Abstract

A number of recent techno-economic studies have shown that energy storage could offer significant benefits to a low-carbon UK energy system as it faces increased challenges in matching supply and demand. However, the majority of this work has not investigated the real-world issues affecting the widespread deployment of storage. This paper is designed to address this gap by drawing on the systems innovation and socio-technical transitions literature to identify some of the most important contextual factors which are likely to influence storage deployment. Specifically it uses a coevolutionary framework to examine how changes in ecosystems, user practices, business strategies, institutions and technologies are creating a new selection environment and potentially opening up the energy system to new variations of storage for both electricity and heat. The analysis shows how these different dimensions of the energy regime can coevolve in mutually reinforcing ways to create alternative pathways for the energy system which in turn have different flexibility requirements and imply different roles for storage technologies. Using this framework three pathways are developed – user led, decentralised and centralised – which illustrate potential long-term trajectories for energy storage technologies in a low-carbon energy system.

Suggested Citation

  • Taylor, Peter G. & Bolton, Ronan & Stone, Dave & Upham, Paul, 2013. "Developing pathways for energy storage in the UK using a coevolutionary framework," Energy Policy, Elsevier, vol. 63(C), pages 230-243.
  • Handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:230-243
    DOI: 10.1016/j.enpol.2013.08.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.08.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    2. Christian Oltra & Paul Upham & Hauke Riesch & Àlex Boso & Suzanne Brunsting & Elisabeth Dütschke & Aleksandra Lis, 2012. "Public Responses to Co2 Storage Sites: Lessons from Five European Cases," Energy & Environment, , vol. 23(2-3), pages 227-248, May.
    3. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    4. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    5. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    6. Hall, Peter J. & Bain, Euan J., 2008. "Energy-storage technologies and electricity generation," Energy Policy, Elsevier, vol. 36(12), pages 4352-4355, December.
    7. Upham, Paul & Speakman, Dorian, 2007. "Stakeholder opinion on constrained 2030 bioenergy scenarios for North West England," Energy Policy, Elsevier, vol. 35(11), pages 5549-5561, November.
    8. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    9. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    10. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    11. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    12. Toke, David & Fragaki, Aikaterini, 2008. "Do liberalised electricity markets help or hinder CHP and district heating? The case of the UK," Energy Policy, Elsevier, vol. 36(4), pages 1448-1456, April.
    13. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    14. Wilson, I.A. Grant & McGregor, Peter G. & Infield, David G. & Hall, Peter J., 2011. "Grid-connected renewables, storage and the UK electricity market," Renewable Energy, Elsevier, vol. 36(8), pages 2166-2170.
    15. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    16. Grünewald, Philipp & Cockerill, Tim & Contestabile, Marcello & Pearson, Peter, 2011. "The role of large scale storage in a GB low carbon energy future: Issues and policy challenges," Energy Policy, Elsevier, vol. 39(9), pages 4807-4815, September.
    17. Wilson, Ian Allan Grant & McGregor, Peter G. & Hall, Peter J., 2010. "Energy storage in the UK electrical network: Estimation of the scale and review of technology options," Energy Policy, Elsevier, vol. 38(8), pages 4099-4106, August.
    18. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    19. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    20. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    21. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    22. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    23. R. Bolton & T.J. Foxon, 2011. "Governing Infrastructure Networks For A Low Carbon Economy: Co-Evolution Of Technologies And Institutions In Uk Electricity Distribution Networks," Competition and Regulation in Network Industries, Intersentia, vol. 12(1), pages 2-27, March.
    24. Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
    25. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    26. Grünewald, Philipp H. & Cockerill, Timothy T. & Contestabile, Marcello & Pearson, Peter J.G., 2012. "The socio-technical transition of distributed electricity storage into future networks—System value and stakeholder views," Energy Policy, Elsevier, vol. 50(C), pages 449-457.
    27. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.
    28. Hall, Peter J., 2008. "Energy storage: The route to liberation from the fossil fuel economy?," Energy Policy, Elsevier, vol. 36(12), pages 4363-4367, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrich J. Frey & Sandra Wassermann & Marc Deissenroth-Uhrig, 2020. "Storage Technologies for the Electricity Transition: An Analysis of Actors, Actor Perspectives and Transition Pathways in Germany," Energies, MDPI, vol. 14(1), pages 1-19, December.
    2. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    3. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    4. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    5. Garvey, S.D. & Eames, P.C. & Wang, J.H. & Pimm, A.J. & Waterson, M. & MacKay, R.S. & Giulietti, M. & Flatley, L.C. & Thomson, M. & Barton, J. & Evans, D.J. & Busby, J. & Garvey, J.E., 2015. "On generation-integrated energy storage," Energy Policy, Elsevier, vol. 86(C), pages 544-551.
    6. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
    7. Candelise, Chiara & Westacott, Paul, 2017. "Can integration of PV within UK electricity network be improved? A GIS based assessment of storage," Energy Policy, Elsevier, vol. 109(C), pages 694-703.
    8. Juntunen, Jouni K. & Hyysalo, Sampsa, 2015. "Renewable micro-generation of heat and electricity—Review on common and missing socio-technical configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 857-870.
    9. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    10. Pepa Ambrosio-Albalá & Catherine S. E. Bale & Andrew J. Pimm & Peter G. Taylor, 2020. "What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives," Energies, MDPI, vol. 13(24), pages 1-22, December.
    11. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    12. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    13. Jiang, Zhu & Palacios, Anabel & Zou, Boyang & Zhao, Yanqi & Deng, Weiyu & Zhang, Xiaosong & Ding, Yulong, 2022. "A review on the fabrication methods for structurally stabilised composite phase change materials and their impacts on the properties of materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Armstrong, P. & Ager, D. & Thompson, I. & McCulloch, M., 2014. "Domestic hot water storage: Balancing thermal and sanitary performance," Energy Policy, Elsevier, vol. 68(C), pages 334-339.
    15. Schriever, Marlene & Halstrup, Dominik, 2018. "Exploring the adoption in transitioning markets: Empirical findings and implications on energy storage solutions-acceptance in the German manufacturing industry," Energy Policy, Elsevier, vol. 120(C), pages 460-468.
    16. Hamelink, Martijn & Opdenakker, Raymond, 2019. "How business model innovation affects firm performance in the energy storage market," Renewable Energy, Elsevier, vol. 131(C), pages 120-127.
    17. Carbajo, Ruth & Cabeza, Luisa F., 2021. "Researchers perception regarding socio-technical approaches implementation in their own research. Thermal energy storage researchers as example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Ahmed Gailani & Tracey Crosbie & Maher Al-Greer & Michael Short & Nashwan Dawood, 2020. "On the Role of Regulatory Policy on the Business Case for Energy Storage in Both EU and UK Energy Systems: Barriers and Enablers," Energies, MDPI, vol. 13(5), pages 1-20, March.
    19. Ambrosio-Albala, P. & Upham, P. & Bale, C.S.E. & Taylor, P.G., 2020. "Exploring acceptance of decentralised energy storage at household and neighbourhood scales: A UK survey," Energy Policy, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolton, Ronan & Foxon, Timothy J., 2015. "Infrastructure transformation as a socio-technical process — Implications for the governance of energy distribution networks in the UK," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 538-550.
    2. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    3. Juntunen, Jouni K. & Hyysalo, Sampsa, 2015. "Renewable micro-generation of heat and electricity—Review on common and missing socio-technical configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 857-870.
    4. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    5. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    6. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    7. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    8. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    9. Kivimaa, Paula & Kern, Florian, 2016. "Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions," Research Policy, Elsevier, vol. 45(1), pages 205-217.
    10. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    11. Timothy J. Foxon, 2014. "Technological lock-in and the role of innovation," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 20, pages 304-316, Edward Elgar Publishing.
    12. Sorrell, Steve, 2018. "Explaining sociotechnical transitions: A critical realist perspective," Research Policy, Elsevier, vol. 47(7), pages 1267-1282.
    13. Geddes, Anna & Schmidt, Tobias S., 2020. "Integrating finance into the multi-level perspective: Technology niche-finance regime interactions and financial policy interventions," Research Policy, Elsevier, vol. 49(6).
    14. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    15. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    16. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    17. Rosenbloom, Daniel & Berton, Harris & Meadowcroft, James, 2016. "Framing the sun: A discursive approach to understanding multi-dimensional interactions within socio-technical transitions through the case of solar electricity in Ontario, Canada," Research Policy, Elsevier, vol. 45(6), pages 1275-1290.
    18. Jukka Luhas & Mirja Mikkilä & Ville Uusitalo & Lassi Linnanen, 2019. "Product Diversification in Sustainability Transition: The Forest-Based Bioeconomy in Finland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    19. Hecher, Maria & Vilsmaier, Ulli & Akhavan, Roya & Binder, Claudia R., 2016. "An integrative analysis of energy transitions in energy regions: A case study of ökoEnergieland in Austria," Ecological Economics, Elsevier, vol. 121(C), pages 40-53.
    20. Poullikkas, Andreas, 2013. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 778-788.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:63:y:2013:i:c:p:230-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.