IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v33y2012i3p125-152.html
   My bibliography  Save this article

The Role of Energy in the Industrial Revolution and Modern Economic Growth

Author

Listed:
  • David I. Stern
  • Astrid Kander

Abstract

The expansion in the supply of energy services over the last couple of centuries has reduced the apparent importance of energy in economic growth despite energy being an essential production input. We demonstrate this by developing a simple extension of the Solow growth model, which we use to investigate 200 years of Swedish data. We find that the elasticity of substitution between a capital-labor aggregate and energy is less than unity, which implies that when energy services are scarce they strongly constrain output growth resulting in a low income steady-state. When energy services are abundant the economy exhibits the behavior of the “modern growth regime†with the Solow model as a limiting case. The expansion of energy services is found to be a major factor in explaining economic growth in Sweden, especially before the second half of the 20th century. After 1950, labor-augmenting technological change becomes the dominant factor driving growth though energy still plays a role.

Suggested Citation

  • David I. Stern & Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, , vol. 33(3), pages 125-152, July.
  • Handle: RePEc:sae:enejou:v:33:y:2012:i:3:p:125-152
    DOI: 10.5547/01956574.33.3.5
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.33.3.5
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.33.3.5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert U. Ayres & Benjamin Warr, 2009. "The Economic Growth Engine," Books, Edward Elgar Publishing, number 13324.
    2. Myllyntaus, Timo & Mattila, Timo, 2002. "Decline or increase? The standing timber stock in Finland, 1800-1997," Ecological Economics, Elsevier, vol. 41(2), pages 271-288, May.
    3. Brock, William A. & Taylor, M. Scott, 2005. "Economic Growth and the Environment: A Review of Theory and Empirics," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 28, pages 1749-1821, Elsevier.
    4. Stern, David I., 2012. "Modeling international trends in energy efficiency," Energy Economics, Elsevier, vol. 34(6), pages 2200-2208.
    5. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    6. Roger Fouquet & Peter J.G. Pearson, 2006. "Seven Centuries of Energy Services: The Price and Use of Light in the United Kingdom (1300-2000)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 139-178.
    7. Jones Charles I., 2001. "Was an Industrial Revolution Inevitable? Economic Growth Over the Very Long Run," The B.E. Journal of Macroeconomics, De Gruyter, vol. 1(2), pages 1-45, August.
    8. Nicholas Crafts, 2004. "Steam as a general purpose technology: A growth accounting perspective," Economic Journal, Royal Economic Society, vol. 114(495), pages 338-351, April.
    9. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    10. Joseph E. Stiglitz, 1974. "Growth with Exhaustible Natural Resources: The Competitive Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 139-152.
    11. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    12. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    13. Robert S. Chirinko, 2008. "ó: The Long And Short Of It," CESifo Working Paper Series 2234, CESifo.
    14. Galor, Oded, 2005. "From Stagnation to Growth: Unified Growth Theory," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 4, pages 171-293, Elsevier.
    15. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    16. Gary D. Hansen & Edward C. Prescott, 2002. "Malthus to Solow," American Economic Review, American Economic Association, vol. 92(4), pages 1205-1217, September.
    17. Philippe Aghion & Peter Howitt, 2009. "The Economics of Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012634, December.
    18. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    19. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    20. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    21. Choe Chongwoo & Park In-Uck, 2011. "Information, Authority, and Corporate Hierarchies," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 11(1), pages 1-39, February.
    22. Hirtle, Beverly, 2009. "Credit derivatives and bank credit supply," Journal of Financial Intermediation, Elsevier, vol. 18(2), pages 125-150, April.
    23. Barelli, Paulo & de Abreu Pessoa, Samuel, 2003. "Inada conditions imply that production function must be asymptotically Cobb-Douglas," Economics Letters, Elsevier, vol. 81(3), pages 361-363, December.
    24. Madsen, Jakob B., 2007. "Technology spillover through trade and TFP convergence: 135 years of evidence for the OECD countries," Journal of International Economics, Elsevier, vol. 72(2), pages 464-480, July.
    25. Hong, Seung Hyun & Wagner, Martin, 2008. "Nonlinear Cointegration Analysis and the Environmental Kuznets Curve," Economics Series 224, Institute for Advanced Studies.
    26. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    27. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185.
    28. Allen,Robert C., 2009. "The British Industrial Revolution in Global Perspective," Cambridge Books, Cambridge University Press, number 9780521868273, September.
    29. Kim, H Youn, 1992. "The Translog Production Function and Variable Returns to Scale," The Review of Economics and Statistics, MIT Press, vol. 74(3), pages 546-552, August.
    30. Stern, David I., 2002. "Explaining changes in global sulfur emissions: an econometric decomposition approach," Ecological Economics, Elsevier, vol. 42(1-2), pages 201-220, August.
    31. Wrigley,E. A., 2010. "Energy and the English Industrial Revolution," Cambridge Books, Cambridge University Press, number 9780521766937, January.
    32. Jakob Madsen & James Ang & Rajabrata Banerjee, 2010. "Four centuries of British economic growth: the roles of technology and population," Journal of Economic Growth, Springer, vol. 15(4), pages 263-290, December.
    33. Chirinko, Robert S., 2008. "[sigma]: The long and short of it," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 671-686, June.
    34. Charles Hall & Pradeep Tharakan & John Hallock & Cutler Cleveland & Michael Jefferson, 2003. "Hydrocarbons and the evolution of human culture," Nature, Nature, vol. 426(6964), pages 318-322, November.
    35. Shin, Yongcheol, 1994. "A Residual-Based Test of the Null of Cointegration Against the Alternative of No Cointegration," Econometric Theory, Cambridge University Press, vol. 10(1), pages 91-115, March.
    36. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    37. Oded Galor, 2011. "Unified Growth Theory," Economics Books, Princeton University Press, edition 1, number 9477.
    38. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    39. Steven N. Durlauf & Paul A. Johnson & Jonathan R. W. Temple, 2009. "The Methods of Growth Econometrics," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 24, pages 1119-1179, Palgrave Macmillan.
    40. Jones, Larry E. & Manuelli, Rodolfo E., 2005. "Neoclassical Models of Endogenous Growth: The Effects of Fiscal Policy, Innovation and Fluctuations," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 1, pages 13-65, Elsevier.
    41. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    42. Di Maria, Corrado & Valente, Simone, 2008. "Hicks meets Hotelling: the direction of technical change in capital–resource economies," Environment and Development Economics, Cambridge University Press, vol. 13(6), pages 691-717, December.
    43. Rainer Klump & Harald Preissler, 2000. "CES Production Functions and Economic Growth," Scandinavian Journal of Economics, Wiley Blackwell, vol. 102(1), pages 41-56, March.
    44. Stern, David I., 1993. "Energy and economic growth in the USA : A multivariate approach," Energy Economics, Elsevier, vol. 15(2), pages 137-150, April.
    45. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    46. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    47. Matt Benge & Graeme Wells, 2002. "Growth and the Current Account in a Small Open Economy," The Journal of Economic Education, Taylor & Francis Journals, vol. 33(2), pages 152-165, June.
    48. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    49. Stern, David I., 2000. "A multivariate cointegration analysis of the role of energy in the US macroeconomy," Energy Economics, Elsevier, vol. 22(2), pages 267-283, April.
    50. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    51. Larry E. Jones & Rodolfo E. Manuelli, 2001. "Endogenous Policy Choice: The Case of Pollution and Growth," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 4(2), pages 369-405, July.
    52. Gregory Clark, 2007. "Introduction to A Farewell to Alms: A Brief Economic History of the World," Introductory Chapters, in: A Farewell to Alms: A Brief Economic History of the World, Princeton University Press.
    53. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    54. Ernst Berndt & Charles Kolstad & Jong-Kun Lee, 1993. "Measuring the Energy Efficiency and Productivity Impacts of Embodied Technical Change," The Energy Journal, , vol. 14(1), pages 33-55, January.
    55. Wrigley,E. A., 2010. "Energy and the English Industrial Revolution," Cambridge Books, Cambridge University Press, number 9780521131858, January.
    56. Choi, In & Saikkonen, Pentti, 2010. "Tests For Nonlinear Cointegration," Econometric Theory, Cambridge University Press, vol. 26(3), pages 682-709, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Green & Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, , vol. 33(3), pages 1-22, July.
    2. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    3. Kander, Astrid & Stern, David I., 2014. "Economic growth and the transition from traditional to modern energy in Sweden," Energy Economics, Elsevier, vol. 46(C), pages 56-65.
    4. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    5. Fabian Knorre & Martin Wagner & Maximilian Grupe, 2021. "Monitoring Cointegrating Polynomial Regressions: Theory and Application to the Environmental Kuznets Curves for Carbon and Sulfur Dioxide Emissions," Econometrics, MDPI, vol. 9(1), pages 1-35, March.
    6. Emmanuel Bovari & Victor Court, 2019. "Energy, knowledge, and demo-economic development in the long run: a unified growth model," Working Papers hal-01698755, HAL.
    7. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    8. Gars, Johan & Olovsson, Conny, 2019. "Fuel for economic growth?," Journal of Economic Theory, Elsevier, vol. 184(C).
    9. Holger Strulik, 2014. "Knowledge And Growth In The Very Long Run," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(2), pages 459-482, May.
    10. Bartleet, Matthew & Gounder, Rukmani, 2010. "Energy consumption and economic growth in New Zealand: Results of trivariate and multivariate models," Energy Policy, Elsevier, vol. 38(7), pages 3508-3517, July.
    11. Broadberry Stephen, 2012. "Recent Developments in the Theory of Very Long Run Growth: A Historical Appraisal," Jahrbuch für Wirtschaftsgeschichte / Economic History Yearbook, De Gruyter, vol. 53(1), pages 277-306, May.
    12. Dalgaard, Carl-Johan & Strulik, Holger, 2013. "The history augmented Solow model," European Economic Review, Elsevier, vol. 63(C), pages 134-149.
    13. Jakob B. Madsen & Fabrice Murtin, 2017. "British economic growth since 1270: the role of education," Journal of Economic Growth, Springer, vol. 22(3), pages 229-272, September.
    14. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    15. Ravshonbek Otojanov & Roger Fouquet & Brigitte Granville, 2023. "Factor prices and induced technical change in the industrial revolution," Economic History Review, Economic History Society, vol. 76(2), pages 599-623, May.
    16. Fiaschi, Davide & Fioroni, Tamara, 2019. "Transition to modern growth in Great Britain: The role of technological progress, adult mortality and factor accumulation," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 472-490.
    17. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
    18. Jakob Brochner Madsen, 2016. "Human Accomplishment and Growth in Britain since 1270: The Role of Great Scientists and Education," Monash Economics Working Papers 01-16, Monash University, Department of Economics.
    19. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    20. Holger Strulik & Klaus Prettner & Alexia Prskawetz, 2013. "The past and future of knowledge-based growth," Journal of Economic Growth, Springer, vol. 18(4), pages 411-437, December.

    More about this item

    Keywords

    Unified growth theory; energy; Industrial Revolution; economic growth;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:33:y:2012:i:3:p:125-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.