IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v118y2018icp492-503.html
   My bibliography  Save this article

Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers

Author

Listed:
  • Müller, Simon C.
  • Welpe, Isabell M.

Abstract

More and more households are installing residential electricity storage systems to increase the self-consumption of electricity they produced. Some governments have accelerated this development through specific financial support schemes to offset the costs, which still remain high. Compared to the use of single-household systems, the sharing of mid-scale electricity storage systems in neighborhoods could reduce the Levelized Costs of Storage (LCOS). However, a model for the shared usage of storage by multiple households has yet to emerge. We investigated eight demonstration projects in Germany and Western Australia with capacities between 100 and 1100 kW h with respect to potential business models and barriers in a cross-case study based on document analyses and expert interviews. We found that models relying on the transmission of electricity from individual rooftop photovoltaics to a shared storage system through the public grid are facing significant regulatory barriers. Removing these policy barriers would enable a more efficient use of electricity storage systems. By contrast, projects relying on a less regulated microgrid managed by the administration or strata entities of multi-household developments already seem promising under the current regulatory framework.

Suggested Citation

  • Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
  • Handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:492-503
    DOI: 10.1016/j.enpol.2018.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518301952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parra, David & Norman, Stuart A. & Walker, Gavin S. & Gillott, Mark, 2017. "Optimum community energy storage for renewable energy and demand load management," Applied Energy, Elsevier, vol. 200(C), pages 358-369.
    2. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    3. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    4. Richter, Mario, 2012. "Utilities’ business models for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2483-2493.
    5. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    6. Frank W. Geels & Frans Berkhout & Detlef P. van Vuuren, 2016. "Bridging analytical approaches for low-carbon transitions," Nature Climate Change, Nature, vol. 6(6), pages 576-583, June.
    7. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    8. Wolf-Peter Schill, Alexander Zerrahn, and Friedrich Kunz, 2017. "Prosumage of solar electricity: pros, cons, and the system perspective," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    9. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    10. Mueller, Simon C. & Sandner, Philipp G. & Welpe, Isabell M., 2015. "Monitoring innovation in electrochemical energy storage technologies: A patent-based approach," Applied Energy, Elsevier, vol. 137(C), pages 537-544.
    11. Parra, David & Gillott, Mark & Norman, Stuart A. & Walker, Gavin S., 2015. "Optimum community energy storage system for PV energy time-shift," Applied Energy, Elsevier, vol. 137(C), pages 576-587.
    12. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    13. He, Xian & Delarue, Erik & D'haeseleer, William & Glachant, Jean-Michel, 2011. "A novel business model for aggregating the values of electricity storage," Energy Policy, Elsevier, vol. 39(3), pages 1575-1585, March.
    14. Melville, Emilia & Christie, Ian & Burningham, Kate & Way, Celia & Hampshire, Phil, 2017. "The electric commons: A qualitative study of community accountability," Energy Policy, Elsevier, vol. 106(C), pages 12-21.
    15. Rieger, Alexander & Thummert, Robert & Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang, 2016. "Estimating the benefits of cooperation in a residential microgrid: A data-driven approach," Applied Energy, Elsevier, vol. 180(C), pages 130-141.
    16. Yunusov, Timur & Frame, Damien & Holderbaum, William & Potter, Ben, 2016. "The impact of location and type on the performance of low-voltage network connected battery energy storage systems," Applied Energy, Elsevier, vol. 165(C), pages 202-213.
    17. Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
    18. Bohnsack, René & Pinkse, Jonatan & Kolk, Ans, 2014. "Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles," Research Policy, Elsevier, vol. 43(2), pages 284-300.
    19. Huijben, J.C.C.M. & Verbong, G.P.J., 2013. "Breakthrough without subsidies? PV business model experiments in the Netherlands," Energy Policy, Elsevier, vol. 56(C), pages 362-370.
    20. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    21. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    22. Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
    23. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    24. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    25. Scott Agnew & Paul Dargusch, 2015. "Effect of residential solar and storage on centralized electricity supply systems," Nature Climate Change, Nature, vol. 5(4), pages 315-318, April.
    26. Blechinger, P. & Cader, C. & Bertheau, P. & Huyskens, H. & Seguin, R. & Breyer, C., 2016. "Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands," Energy Policy, Elsevier, vol. 98(C), pages 674-687.
    27. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    28. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    29. Kumar Sahu, Bikash, 2015. "A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 621-634.
    30. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    31. A. Stephan & B. Battke & M. D. Beuse & J. H. Clausdeinken & T. S. Schmidt, 2016. "Limiting the public cost of stationary battery deployment by combining applications," Nature Energy, Nature, vol. 1(7), pages 1-9, July.
    32. Viardot, Eric, 2013. "The role of cooperatives in overcoming the barriers to adoption of renewable energy," Energy Policy, Elsevier, vol. 63(C), pages 756-764.
    33. Hannon, Matthew J. & Foxon, Timothy J. & Gale, William F., 2013. "The co-evolutionary relationship between Energy Service Companies and the UK energy system: Implications for a low-carbon transition," Energy Policy, Elsevier, vol. 61(C), pages 1031-1045.
    34. Kerr, Sandy & Johnson, Kate & Weir, Stephanie, 2017. "Understanding community benefit payments from renewable energy development," Energy Policy, Elsevier, vol. 105(C), pages 202-211.
    35. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    36. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    37. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    38. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    39. Bolton, Ronan & Hannon, Matthew, 2016. "Governing sustainability transitions through business model innovation: Towards a systems understanding," Research Policy, Elsevier, vol. 45(9), pages 1731-1742.
    40. Grünewald, Philipp H. & Cockerill, Timothy T. & Contestabile, Marcello & Pearson, Peter J.G., 2012. "The socio-technical transition of distributed electricity storage into future networks—System value and stakeholder views," Energy Policy, Elsevier, vol. 50(C), pages 449-457.
    41. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    42. Simshauser, Paul, 2016. "Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs," Energy Economics, Elsevier, vol. 54(C), pages 108-122.
    43. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    2. Tuomo Joensuu & Markku Norvasuo & Harry Edelman, 2019. "Stakeholders’ Interests in Developing an Energy Ecosystem for the Superblock—Case Hiedanranta," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    3. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    4. Frederik Plewnia, 2019. "The Energy System and the Sharing Economy: Interfaces and Overlaps and What to Learn from Them," Energies, MDPI, vol. 12(3), pages 1-17, January.
    5. Sophie Adams & Donal Brown & Juan Pablo Cárdenas Álvarez & Ruzanna Chitchyan & Michael J. Fell & Ulf J. J. Hahnel & Kristina Hojckova & Charlotte Johnson & Lurian Klein & Mehdi Montakhabi & Kelvin Say, 2021. "Social and Economic Value in Emerging Decentralized Energy Business Models: A Critical Review," Energies, MDPI, vol. 14(23), pages 1-29, November.
    6. Gährs, Swantje & Knoefel, Jan, 2020. "Stakeholder demands and regulatory framework for community energy storage with a focus on Germany," Energy Policy, Elsevier, vol. 144(C).
    7. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Pepa Ambrosio-Albalá & Catherine S. E. Bale & Andrew J. Pimm & Peter G. Taylor, 2020. "What Makes Decentralised Energy Storage Schemes Successful? An Assessment Incorporating Stakeholder Perspectives," Energies, MDPI, vol. 13(24), pages 1-22, December.
    9. Esther Hoffmann & Franziska Mohaupt, 2020. "Joint Storage: A Mixed-Method Analysis of Consumer Perspectives on Community Energy Storage in Germany," Energies, MDPI, vol. 13(11), pages 1-22, June.
    10. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).
    11. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
    12. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    13. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Hong, Juwon & Jeoung, Jaewon & Hong, Taehoon, 2023. "Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).
    15. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    16. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    17. Simon Wright & Mark Frost & Alfred Wong & Kevin A. Parton, 2022. "Australian Renewable-Energy Microgrids: A Humble Past, a Turbulent Present, a Propitious Future," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    18. Secchi, Mattia & Barchi, Grazia & Macii, David & Moser, David & Petri, Dario, 2021. "Multi-objective battery sizing optimisation for renewable energy communities with distribution-level constraints: A prosumer-driven perspective," Applied Energy, Elsevier, vol. 297(C).
    19. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    20. Iazzolino, Gianpaolo & Sorrentino, Nicola & Menniti, Daniele & Pinnarelli, Anna & De Carolis, Monica & Mendicino, Luca, 2022. "Energy communities and key features emerged from business models review," Energy Policy, Elsevier, vol. 165(C).
    21. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    22. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    23. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    24. Michael Hamwi & Iban Lizarralde, 2019. "Demand-side management and renewable energy business models for energy transition A systematic review," Post-Print hal-02448505, HAL.
    25. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    2. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
    3. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
    4. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    5. Seyedfarzad Sarfarazi & Marc Deissenroth-Uhrig & Valentin Bertsch, 2020. "Aggregation of Households in Community Energy Systems: An Analysis from Actors’ and Market Perspectives," Energies, MDPI, vol. 13(19), pages 1-37, October.
    6. Michael Hamwi & Iban Lizarralde, 2019. "Demand-side management and renewable energy business models for energy transition A systematic review," Post-Print hal-02448505, HAL.
    7. Lowitzsch, Jens & Kreutzer, Kaja & George, Jan & Croonenbroeck, Carsten & Breitschopf, Barbara, 2023. "Development prospects for energy communities in the EU identifying best practice and future opportunities using a morphological approach," Energy Policy, Elsevier, vol. 174(C).
    8. Brown, Donal & Hall, Stephen & Davis, Mark E., 2019. "Prosumers in the post subsidy era: an exploration of new prosumer business models in the UK," Energy Policy, Elsevier, vol. 135(C).
    9. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    10. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    12. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    13. Schwarz, Marius & Auzépy, Quentin & Knoeri, Christof, 2020. "Can electricity pricing leverage electric vehicles and battery storage to integrate high shares of solar photovoltaics?," Applied Energy, Elsevier, vol. 277(C).
    14. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    15. Herbes, Carsten & Brummer, Vasco & Rognli, Judith & Blazejewski, Susanne & Gericke, Naomi, 2017. "Responding to policy change: New business models for renewable energy cooperatives – Barriers perceived by cooperatives’ members," Energy Policy, Elsevier, vol. 109(C), pages 82-95.
    16. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Pereira, Guillermo Ivan & Niesten, Eva & Pinkse, Jonatan, 2022. "Sustainable energy systems in the making: A study on business model adaptation in incumbent utilities," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    18. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    19. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    20. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:492-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.