IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v34y2012i1p1-23.html
   My bibliography  Save this article

Learning or lock-in: Optimal technology policies to support mitigation

Author

Listed:
  • Kalkuhl, Matthias
  • Edenhofer, Ottmar
  • Lessmann, Kai

Abstract

We investigate conditions that amplify market failures in energy innovations, and suggest optimal policy instruments to address them. Using an intertemporal general equilibrium model we show that ‘small’ market imperfections may trigger a several decades lasting dominance of an incumbent energy technology over a dynamically more efficient competitor, given that the technologies are very good substitutes. Such a ‘lock-in’ into an inferior technology causes significantly higher welfare losses than market failure alone, notably under ambitious mitigation targets. More than other innovative industries, energy markets are prone to these lock-ins because electricity from different technologies is an almost perfect substitute. To guide government intervention, we compare welfare-maximizing technology policies including subsidies, quotas, and taxes with regard to their efficiency, effectivity, and robustness. Technology quotas and feed-in-tariffs turn out to be only insignificantly less efficient than first-best subsidies and seem to be more robust against small perturbations.

Suggested Citation

  • Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
  • Handle: RePEc:eee:resene:v:34:y:2012:i:1:p:1-23
    DOI: 10.1016/j.reseneeco.2011.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765511000479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2011.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matthias Kalkuhl & Ottmar Edenhofer, 2010. "Prices vs. Quantities and the Intertemporal Dynamics of the Climate Rent," CESifo Working Paper Series 3044, CESifo.
    2. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    3. Nordhaus, William, 2011. "Designing a friendly space for technological change to slow global warming," Energy Economics, Elsevier, vol. 33(4), pages 665-673, July.
    4. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    5. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2008. "Linking Environmental and Innovation Policy," Economic Theory and Applications Working Papers 37847, Fondazione Eni Enrico Mattei (FEEM).
    6. Snorre Kverndokk & Knut Rosendahl & Thomas Rutherford, 2004. "Climate Policies and Induced Technological Change: Which to Choose, the Carrot or the Stick?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(1), pages 21-41, January.
    7. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    8. Salvador Barrios & Eric Strobl, 2004. "Learning by Doing and Spillovers: Evidence from Firm-Level Panel Data," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 25(2), pages 175-203, June.
    9. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    10. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    11. David, Paul A, 1985. "Clio and the Economics of QWERTY," American Economic Review, American Economic Association, vol. 75(2), pages 332-337, May.
    12. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    13. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    14. Islas, Jorge, 1997. "Getting round the lock-in in electricity generating systems: the example of the gas turbine," Research Policy, Elsevier, vol. 26(1), pages 49-66, March.
    15. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    16. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Rivers, Nic & Jaccard, Mark, 2006. "Choice of environmental policy in the presence of learning by doing," Energy Economics, Elsevier, vol. 28(2), pages 223-242, March.
    18. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    19. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
    20. Ottmar Edenhofer & Brigitte Knopf & Terry Barker & Lavinia Baumstark & Elie Bellevrat & Bertrand Chateau & Patrick Criqui & Morna Isaac & Alban Kitous & Socrates Kypreos & Marian Leimbach & Kai Lessma, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, , vol. 31(1_suppl), pages 11-48, June.
    21. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    22. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    23. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    24. Harald Gruber, 1998. "Learning by Doing and Spillovers: Further Evidence for the Semiconductor Industry," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 13(6), pages 697-711, December.
    25. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    26. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    27. Irwin, Douglas A & Klenow, Peter J, 1994. "Learning-by-Doing Spillovers in the Semiconductor Industry," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1200-1227, December.
    28. Cusumano, Michael A. & Mylonadis, Yiorgos & Rosenbloom, Richard S., 1992. "Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta," Business History Review, Cambridge University Press, vol. 66(1), pages 51-94, April.
    29. Foxon, T.J. & Pearson, P.J.G., 2007. "Towards improved policy processes for promoting innovation in renewable electricity technologies in the UK," Energy Policy, Elsevier, vol. 35(3), pages 1539-1550, March.
    30. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    31. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    32. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    33. Pankaj Ghemawat & A. Michael Spence, 1985. "Learning Curve Spillovers and Market Performance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 100(Supplemen), pages 839-852.
    34. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    35. Spence, Michael, 1984. "Cost Reduction, Competition, and Industry Performance," Econometrica, Econometric Society, vol. 52(1), pages 101-121, January.
    36. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    37. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    2. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    3. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    4. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    5. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    6. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    7. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    8. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    9. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    10. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    11. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    12. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    13. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    14. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    15. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E. & McJeon, Haewon C., 2015. "Long-term payoffs of near-term low-carbon deployment policies," Energy Policy, Elsevier, vol. 86(C), pages 493-505.
    16. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    17. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
    18. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2008. "Linking Environmental and Innovation Policy," Economic Theory and Applications Working Papers 37847, Fondazione Eni Enrico Mattei (FEEM).
    19. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.
    20. Kverndokk, Snorre & Rosendahl, Knut Einar & Rutherford, Thomas F., 2004. "Climate policies and induced technological change: Impacts and timing of technology subsidies," Memorandum 05/2004, Oslo University, Department of Economics.

    More about this item

    Keywords

    Renewable energy subsidy; Renewable portfolio standard; Feed-in-tariffs; Carbon pricing;
    All these keywords.

    JEL classification:

    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:34:y:2012:i:1:p:1-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.