IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02559884.html
   My bibliography  Save this paper

Carbon capture usage and storage with scale-up : energy finance through bricolage deploying the co-integration methodology

Author

Listed:
  • Bhumika Gupta

    (LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris])

  • Salil K. Sen

    (IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris])

Abstract

Recent studies surprisingly indicate that fossil fuels could constitute 81% of primary energy demand, to 2040, 60% would continue to be from coal. This could mean more greenhouse emissions. This paper addresses the research proposition that coal though black, yet, could be green with co-integration of carbon capture and storage (CCS) and carbon capture and usage (CCU). The incertitude surrounding the future of coal is a palpable and credible research gap. The other research chasm is the search of energy finance necessary to economically, societally and environmentally leverage the carbon removal. This issue is addressed as bricolage finance for optimal resource optimization. The bricolage supports societal entrepreneurialism that deploy funding sources from bottom-up developmental finance. The twin key outcomes here are: (i) Appropriately scaled-up, grassroots-sourced bricolage sustains the societal acceptance of CCS and CCU, (ii) enhances the environmental economics of coal-based thermal power plugged-in with CCU and CCS. The methodological essence of this approach is tri-trajectory literature review, that propose (i) technology-led CCU/CCS (ii) financial derivative based bricolage and (iii) economic recalibration through bottom-up approach for community-level buy-in. Practical application of this framework is probed with instances from less developed regions in Asia, Africa and Latin America. The data draws from published reports on coal-intensive habitats, particularly in developing countries. Pattern coefficients and reflective indicators were deployed to predict, monitor, and reorient support or opposition for CCS implementation.

Suggested Citation

  • Bhumika Gupta & Salil K. Sen, 2019. "Carbon capture usage and storage with scale-up : energy finance through bricolage deploying the co-integration methodology," Post-Print hal-02559884, HAL.
  • Handle: RePEc:hal:journl:hal-02559884
    DOI: 10.32479/ijeep.8104
    Note: View the original document on HAL open archive server: https://hal.science/hal-02559884v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02559884v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.32479/ijeep.8104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Alphen, Klaas & van Voorst tot Voorst, Quirine & Hekkert, Marko P. & Smits, Ruud E.H.M., 2007. "Societal acceptance of carbon capture and storage technologies," Energy Policy, Elsevier, vol. 35(8), pages 4368-4380, August.
    2. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
    3. M. Ershad Hussain & Mahfuzul Haque, 2019. "Is there any link between economic growth and earth's environment? Evidence from 127 countries for the period 2007–2015," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 8(2), pages 193-208, April.
    4. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    5. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    6. Serkan Yilmaz Kandir & Ahmet Erismis & Ilhan Ozturk, 2015. "Investigating Exchange Rate Exposure of Energy Firms: Evidence from Turkey," Prague Economic Papers, Prague University of Economics and Business, vol. 2015(6), pages 729-743.
    7. repec:prg:jnlpep:v:preprint:id:532:p:1-15 is not listed on IDEAS
    8. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    9. Coltman, Tim & Devinney, Timothy M. & Midgley, David F. & Venaik, Sunil, 2008. "Formative versus reflective measurement models: Two applications of formative measurement," Journal of Business Research, Elsevier, vol. 61(12), pages 1250-1262, December.
    10. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    11. David C. Warren & Sanya R. Carley & Rachel M. Krause & John A. Rupp & John D. Graham, 2014. "Predictors of attitudes toward carbon capture and storage using data on world views and CCS-specific attitudes," Science and Public Policy, Oxford University Press, vol. 41(6), pages 821-834.
    12. Stefan Bringezu, 2014. "Carbon Recycling for Renewable Materials and Energy Supply," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 327-340, May.
    13. Tarancon, Miguel Angel & del Rio, Pablo, 2007. "CO2 emissions and intersectoral linkages. The case of Spain," Energy Policy, Elsevier, vol. 35(2), pages 1100-1116, February.
    14. Markusson, Nils & Kern, Florian & Watson, Jim & Arapostathis, Stathis & Chalmers, Hannah & Ghaleigh, Navraj & Heptonstall, Philip & Pearson, Peter & Rossati, David & Russell, Stewart, 2012. "A socio-technical framework for assessing the viability of carbon capture and storage technology," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 903-918.
    15. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    16. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    2. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    3. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
    4. Kern, Florian & Gaede, James & Meadowcroft, James & Watson, Jim, 2016. "The political economy of carbon capture and storage: An analysis of two demonstration projects," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 250-260.
    5. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    7. Dapeng, Liang & Weiwei, Wu, 2009. "Barriers and incentives of CCS deployment in China: Results from semi-structured interviews," Energy Policy, Elsevier, vol. 37(6), pages 2421-2432, June.
    8. Franki, Vladimir & Višković, Alfredo, 2021. "Multi-criteria decision support: A case study of Southeast Europe power systems," Utilities Policy, Elsevier, vol. 73(C).
    9. Evar, Benjamin, 2011. "Conditional inevitability: Expert perceptions of carbon capture and storage uncertainties in the UK context," Energy Policy, Elsevier, vol. 39(6), pages 3414-3424, June.
    10. Alfredo Vi kovic & Vladimir Franki, 2015. "Coal Based Electricity Generation in South East Europe: A Case Study for Croatia," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 206-230.
    11. Mara Madaleno & Victor Moutinho & Jorge Mota, 2015. "Time Relationships among Electricity and Fossil Fuel Prices: Industry and Households in Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 525-533.
    12. Nemet, Gregory F. & Zipperer, Vera & Kraus, Martina, 2018. "The valley of death, the technology pork barrel, and public support for large demonstration projects," Energy Policy, Elsevier, vol. 119(C), pages 154-167.
    13. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    14. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    15. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "Effect of regulation on power-plant operation and investment in the South East Europe Market: An analysis of two cases," Utilities Policy, Elsevier, vol. 30(C), pages 8-17.
    16. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    17. Bilal Mehmood & Syed Hassan Raza & Mahwish Rana & Huma Sohaib & Muhammad Azhar Khan, 2014. "Triangular Relationship between Energy Consumption, Price Index and National Income in Asian Countries: A Pooled Mean Group Approach in Presence of Structural Breaks," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 610-620.
    18. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    19. Ismael Pérez-Franco & Agustín García-García & Juan J. Maldonado-Briegas, 2020. "Energy Transition Towards a Greener and More Competitive Economy: The Iberian Case," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    20. Ranjan Aneja & Umer J. Banday & Tanzeem Hasnat & Mustafa Koçoglu, 2017. "Renewable and Non-renewable Energy Consumption and Economic Growth: Empirical Evidence from Panel Error Correction Model," Jindal Journal of Business Research, , vol. 6(1), pages 76-85, June.

    More about this item

    Keywords

    Carbon Capture and Storage; Carbon Capture and Usage; Energy Finance through Bricolage; Pattern Coefficients; Reflective Indicators;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02559884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.