How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2018.08.061
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- B. C. C. VAN DER ZWAAN & H. RÖSLER & T. KOBER & T. ABOUMAHBOUB & K. V. CALVIN & D. E. H. J. GERNAAT & G. MARANGONI & D. McCOLLUM, 2013. "A Cross-Model Comparison Of Global Long-Term Technology Diffusion Under A 2°C Climate Change Control Target," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-24.
- Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
- Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
- Brown, James & Hendry, Chris, 2009. "Public demonstration projects and field trials: Accelerating commercialisation of sustainable technology in solar photovoltaics," Energy Policy, Elsevier, vol. 37(7), pages 2560-2573, July.
- Gert Jan Kramer & Martin Haigh, 2009. "No quick switch to low-carbon energy," Nature, Nature, vol. 462(7273), pages 568-569, December.
- Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
- Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
- Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
- Mercer, Lloyd J. & Douglas Morgan, W., 1971. "Alternative interpretations of market saturation: Evaluation for the automobile market in the late twenties," Explorations in Economic History, Elsevier, vol. 9(1), pages 269-290.
- Sharon Oster, 1982. "The Diffusion of Innovation among Steel Firms: The Basic Oxygen Furnace," Bell Journal of Economics, The RAND Corporation, vol. 13(1), pages 45-56, Spring.
- Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
- Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
- Sanden, Bjorn A. & Azar, Christian, 2005. "Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches," Energy Policy, Elsevier, vol. 33(12), pages 1557-1576, August.
- Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
- Edwin Mansfield, 1965. "Innovation and Technical Change in the Railroad Industry," NBER Chapters, in: Transportation Economics, pages 169-197, National Bureau of Economic Research, Inc.
- Batiz-Lazo, Bernardo & Reid, Robert J. K., 2008. "Evidence from the Patent Record on the Development of Cash Dispensing Technology," MPRA Paper 9461, University Library of Munich, Germany.
- Arapostathis, Stathis & Carlsson-Hyslop, Anna & Pearson, Peter J G & Thornton, Judith & Gradillas, Maria & Laczay, Scott & Wallis, Suzanne, 2013. "Governing transitions: Cases and insights from two periods in the history of the UK gas industry," Energy Policy, Elsevier, vol. 52(C), pages 25-44.
- Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
- Robert W. Fri, 2003. "The Role of Knowledge: Technological Innovation in the Energy System," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 51-74.
- Bohlin, Anders & Gruber, Harald & Koutroumpis, Pantelis, 2010. "Diffusion of new technology generations in mobile communications," Information Economics and Policy, Elsevier, vol. 22(1), pages 51-60, March.
- Vaclav Smil, 2010. "Energy Myths and Realities: Bringing Science to the Energy Policy Debate," Books, American Enterprise Institute, number 50339, September.
- Lund, Peter, 2006. "Market penetration rates of new energy technologies," Energy Policy, Elsevier, vol. 34(17), pages 3317-3326, November.
- Fouquet, Roger, 2010.
"The slow search for solutions: Lessons from historical energy transitions by sector and service,"
Energy Policy, Elsevier, vol. 38(11), pages 6586-6596, November.
- Roger Fouquet, 2010. "The Slow Search for Solutions: Lessons from Historical Energy Transitions by Sector and Service," Working Papers 2010-05, BC3.
- Anna Bergek & Fredrik Tell & Christian Berggren & Jim Watson, 2008. "Technological capabilities and late shakeouts: industrial dynamics in the advanced gas turbine industry, 1987-2002," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(2), pages 335-392, April.
- Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
- Geroski, P. A., 2000.
"Models of technology diffusion,"
Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
- Geroski, Paul A, 1999. "Models of Technology Diffusion," CEPR Discussion Papers 2146, C.E.P.R. Discussion Papers.
- Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
- Gregory F. Nemet & Erin Baker, 2009.
"Demand Subsidies Versus R&D: Comparing the Uncertain Impacts of Policy on a Pre-commercial Low-carbon Energy Technology,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 49-80.
- Gregory F. Nemet & Erin Baker, 2009. "Demand Subsidies Versus R&D: Comparing the Uncertain Impacts of Policy on a Pre-commercial Low-carbon Energy Technology," The Energy Journal, , vol. 30(4), pages 49-80, October.
- Dieter Helm, 2010. "Government failure, rent-seeking, and capture: the design of climate change policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 182-196, Summer.
- Saviotti, P. P. & Metcalfe, J. S., 1984. "A theoretical approach to the construction of technological output indicators," Research Policy, Elsevier, vol. 13(3), pages 141-151, June.
- Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
- Davies, Stephen W., 1979. "Inter-firm diffusion of process innovations," European Economic Review, Elsevier, vol. 12(4), pages 299-317, October.
- Claudio Giachetti & Gianluca Marchi, 2010. "Evolution of firms' product strategy over the life cycle of technology-based industries: A case study of the global mobile phone industry, 1980-2009," Business History, Taylor & Francis Journals, vol. 52(7), pages 1123-1150.
- Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
- Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt2k09h787, Institute of Transportation Studies, UC Davis.
- Carlota Perez, 2002. "Technological Revolutions and Financial Capital," Books, Edward Elgar Publishing, number 2640.
- Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
- Sanderson, Susan Walsh & Simons, Kenneth L., 2014. "Light emitting diodes and the lighting revolution: The emergence of a solid-state lighting industry," Research Policy, Elsevier, vol. 43(10), pages 1730-1746.
- Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles," Institute of Transportation Studies, Working Paper Series qt92h7g194, Institute of Transportation Studies, UC Davis.
- C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
- Watson, Anna, 2022. "Designing publicly funded organisations for accelerated low carbon innovation: A case study of the ETI, UK and ARPA-E, US," Energy Policy, Elsevier, vol. 168(C).
- Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Christophe Bell'ego & David Benatia & Vincent Dortet-Bernardet, 2023. "The Chained Difference-in-Differences," Papers 2301.01085, arXiv.org, revised May 2024.
- Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
- Paul Kerr & Donald R. Noble & Jonathan Hodges & Henry Jeffrey, 2021. "Implementing Radical Innovation in Renewable Energy Experience Curves," Energies, MDPI, vol. 14(9), pages 1-28, April.
- Bauwens, Thomas & Hekkert, Marko & Kirchherr, Julian, 2020. "Circular futures: What Will They Look Like?," Ecological Economics, Elsevier, vol. 175(C).
- Nelson, Sarah & Allwood, Julian M., 2021. "The technological and social timelines of climate mitigation: Lessons from 12 past transitions," Energy Policy, Elsevier, vol. 152(C).
- Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
- Niko Azhari Hidayat & Jusuf Irianto & Dewi Retno Suminar, 2023. "The model of information and communication technologybased learning for medical staff of Universitas Airlangga Hospital," Technium Social Sciences Journal, Technium Science, vol. 40(1), pages 271-287, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
- Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
- Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
- Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
- Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
- Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Tamaryn Napp & Dan Bernie & Rebecca Thomas & Jason Lowe & Adam Hawkes & Ajay Gambhir, 2017. "Exploring the Feasibility of Low-Carbon Scenarios Using Historical Energy Transitions Analysis," Energies, MDPI, vol. 10(1), pages 1-36, January.
- Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
- Kobos, Peter H. & Malczynski, Leonard A. & Walker, La Tonya N. & Borns, David J. & Klise, Geoffrey T., 2018. "Timing is everything: A technology transition framework for regulatory and market readiness levels," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 211-225.
- Polzin, Friedemann, 2017. "Mobilizing private finance for low-carbon innovation – A systematic review of barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 525-535.
- Fagerberg, Jan, 2018.
"Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy,"
Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
- Jan Fagerberg, 2021. "Mobilizing innovation for sustainability transitions: a comment on transformative innovation policy," Working Papers on Innovation Studies 20211115, Centre for Technology, Innovation and Culture, University of Oslo.
- Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014.
"The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector,"
Energy Policy, Elsevier, vol. 73(C), pages 686-700.
- Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
- Charlie Wilson & Arnulf Grubler, 2011. "Lessons from the history of technological change for clean energy scenarios and policies," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 165-184, August.
- Benjamin K. Sovacool, 2016. "The history and politics of energy transitions: Comparing contested views and finding common ground," WIDER Working Paper Series wp-2016-81, World Institute for Development Economic Research (UNU-WIDER).
- Consolación Quintana-Rojo & Fernando E. Callejas-Albiñana & Miguel-Angel Tarancón & Pablo del Río, 2019. "Identifying the Drivers of Wind Capacity Additions: The Case of Spain. A Multiequational Approach," Energies, MDPI, vol. 12(10), pages 1-19, May.
- Nelson, Sarah & Allwood, Julian M., 2021. "The technological and social timelines of climate mitigation: Lessons from 12 past transitions," Energy Policy, Elsevier, vol. 152(C).
- Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
- Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
- Rizzi, Francesco & van Eck, Nees Jan & Frey, Marco, 2014. "The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management," Renewable Energy, Elsevier, vol. 62(C), pages 657-671.
More about this item
Keywords
Technology commercialisation; Innovation policy; Low carbon innovation; Energy technology diffusion; Mission Innovation; Innovation timescales;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:123:y:2018:i:c:p:682-699. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.