IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i2p1774-1797d45682.html
   My bibliography  Save this article

An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution

Author

Listed:
  • Wei Yang

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan)

  • Junnian Song

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan)

  • Yoshiro Higano

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan)

  • Jie Tang

    (College of Environment and Resources, Jilin University, Changchun 130012, China)

Abstract

An integrated optimization simulation model has been developed based on an input-output approach to mitigate water pollution and water scarcity through embedding environmental economic policies and applicable technologies into a complex environ-economic system to obtain an optimal set of policies and technologies that promotes the maximization of the regional economy under the constraints of water pollutant discharge and water availability. An empirical study is undertaken with the Source Region of Liao River as the target area to verify the performance of the model. The relationships between the water environment and socio-economic systems are presented by clarifying the trends in economic development, water pollutant discharge and water supply and demand during a time horizon from 2011 to 2020. The endogenously-formed optimal set of policies and industrial restructuring simultaneously facilitate the reduction of water pollutant discharge and water consumption and increase the water supply. The extent of the mitigation of water pollution and water scarcity via applied policies and technologies promoted by the subsidies provided by the government are specified, and the mechanism of the policy application and subsidization distribution is explained. This model has applicability for other regions in terms of giving an optimal solution via comprehensive assessment of all of the proposed sustainability-related policies with sufficient data accessibility to achieve regional sustainable development.

Suggested Citation

  • Wei Yang & Junnian Song & Yoshiro Higano & Jie Tang, 2015. "An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution," Sustainability, MDPI, vol. 7(2), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:2:p:1774-1797:d:45682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/2/1774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/2/1774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klaus Hubacek & Laixiang Sun, 2005. "Economic and Societal Changes in China and their Effects onWater Use A Scenario Analysis," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 187-200, January.
    2. Sanchez-Choliz, Julio & Duarte, Rosa, 2005. "Water pollution in the Spanish economy: analysis of sensitivity to production and environmental constraints," Ecological Economics, Elsevier, vol. 53(3), pages 325-338, May.
    3. Xiangzheng Deng & Fan Zhang & Zhan Wang & Xing Li & Tao Zhang, 2014. "An Extended Input Output Table Compiled for Analyzing Water Demand and Consumption at County Level in China," Sustainability, MDPI, vol. 6(6), pages 1-20, May.
    4. Z. Xu & K. Takeuchi & H. Ishidaira & X. Zhang, 2002. "Sustainability Analysis for Yellow River Water Resources Using the System Dynamics Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 239-261, June.
    5. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    6. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    7. Xiaoming Xu & Jie Tang & Zhaoyang Li & Chang Liu & Weizheng Han, 2011. "Global warming potential of emissions from rice paddies in Northeastern China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(6), pages 721-731, August.
    8. Chen Lin, 2011. "Identifying Lowest‐Emission Choices and Environmental Pareto Frontiers for Wastewater Treatment Wastewater Treatment Input‐Output Model based Linear Programming," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 367-380, June.
    9. Hawdon, David & Pearson, Peter, 1995. "Input-output simulations of energy, environment, economy interactions in the UK," Energy Economics, Elsevier, vol. 17(1), pages 73-86, January.
    10. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    11. Llop, Maria, 2007. "Economic structure and pollution intensity within the environmental input-output framework," Energy Policy, Elsevier, vol. 35(6), pages 3410-3417, June.
    12. Allyson Beall & Fritz Fiedler & Jan Boll & Barbara Cosens, 2011. "Sustainable Water Resource Management and Participatory System Dynamics. Case Study : Developing the Palouse Basin Participatory Model," Sustainability, MDPI, vol. 3(5), pages 1-23, April.
    13. Velazquez, Esther, 2006. "An input-output model of water consumption: Analysing intersectoral water relationships in Andalusia," Ecological Economics, Elsevier, vol. 56(2), pages 226-240, February.
    14. C. Oliveira & D. Coelho & C. H. Antunes, 2016. "Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: a review," Annals of Operations Research, Springer, vol. 247(2), pages 471-502, December.
    15. Okadera, Tomohiro & Watanabe, Masataka & Xu, Kaiqin, 2006. "Analysis of water demand and water pollutant discharge using a regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam in China," Ecological Economics, Elsevier, vol. 58(2), pages 221-237, June.
    16. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2008. "The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis," Working Papers FNU-169, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2008.
    17. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2011. "The energy and environmental impacts of Italian households consumptions: An input–output approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3897-3908.
    18. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    2. Qian Zhou & Helmut Yabar & Takeshi Mizunoya & Yoshiro Higano, 2017. "Evaluation of Integrated Air Pollution and Climate Change Policies: Case Study in the Thermal Power Sector in Chongqing City, China," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    3. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    4. Christopher Schulz & Antonio A. R. Ioris, 2017. "The Paradox of Water Abundance in Mato Grosso, Brazil," Sustainability, MDPI, vol. 9(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Chen, 2009. "Hybrid input-output analysis of wastewater treatment and environmental impacts: A case study for the Tokyo Metropolis," Ecological Economics, Elsevier, vol. 68(7), pages 2096-2105, May.
    2. Abdeslam Boudhar & Said Boudhar & Aomar Ibourk, 2017. "An input–output framework for analysing relationships between economic sectors and water use and intersectoral water relationships in Morocco," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-25, December.
    3. C. Oliveira & D. Coelho & C. H. Antunes, 2016. "Coupling input–output analysis with multiobjective linear programming models for the study of economy–energy–environment–social (E3S) trade-offs: a review," Annals of Operations Research, Springer, vol. 247(2), pages 471-502, December.
    4. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    5. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    6. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    7. Cansino, J.M. & Cardenete, M.A. & Ordóñez, M. & Román, R., 2012. "Economic analysis of greenhouse gas emissions in the Spanish economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6032-6039.
    8. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
    9. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    10. Huang, Wei & Corbett, James J. & Jin, Di, 2015. "Regional economic and environmental analysis as a decision support for marine spatial planning in Xiamen," Marine Policy, Elsevier, vol. 51(C), pages 555-562.
    11. Alexandros Gkatsikos & Konstadinos Mattas & Efstratios Loizou & Dimitrios Psaltopoulos, 2022. "The Neglected Water Rebound Effect of Income and Employment Growth," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 379-398, January.
    12. Dilekli, Naci & Cazcarro, Ignacio, 2019. "Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    13. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    14. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    15. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    16. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    17. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    18. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    19. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    20. Shaojian Qu & Hao Cai & Dandan Xu & Nabé Mohamed, 2021. "Uncertainty in the prediction and management of CO2 emissions: a robust minimum entropy approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2419-2438, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:2:p:1774-1797:d:45682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.