A Smart Forecasting Approach to District Energy Management
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
- Legendre, Bérangère & Ricci, Olivia, 2015.
"Measuring fuel poverty in France: Which households are the most fuel vulnerable?,"
Energy Economics, Elsevier, vol. 49(C), pages 620-628.
- Bérangère Legendre & Olivia Ricci, 2015. "Measuring fuel poverty in France: Which households are the most fuel vulnerable?," Post-Print hal-01283999, HAL.
- Hernández, Luis & Baladrón, Carlos & Aguiar, Javier M. & Carro, Belén & Sánchez-Esguevillas, Antonio & Lloret, Jaime, 2014. "Artificial neural networks for short-term load forecasting in microgrids environment," Energy, Elsevier, vol. 75(C), pages 252-264.
- Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.
- Jason Grant & Moataz Eltoukhy & Shihab Asfour, 2014. "Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks," Energies, MDPI, vol. 7(4), pages 1-19, March.
- Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Lorena Calavia & Belén Carro & Antonio Sánchez-Esguevillas & Francisco Pérez & Ángel Fernández & Jaime Lloret, 2014. "Artificial Neural Network for Short-Term Load Forecasting in Distribution Systems," Energies, MDPI, vol. 7(3), pages 1-23, March.
- Legendre, Bérangère & Ricci, Olivia, 2015.
"Measuring fuel poverty in France: Which households are the most fuel vulnerable?,"
Energy Economics,
Elsevier, vol. 49(C), pages 620-628.
- Bérangère Legendre & Olivia Ricci, 2015. "Measuring fuel poverty in France: Which households are the most fuel vulnerable?," Post-Print hal-01283999, HAL.
- Bérangère Legendre & Olivia Ricci, 2015. "Measuring fuel poverty in France: Which households are the most fuel vulnerable?," Post-Print hal-01245305, HAL.
- Powell, Kody M. & Sriprasad, Akshay & Cole, Wesley J. & Edgar, Thomas F., 2014. "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, Elsevier, vol. 74(C), pages 877-885.
- Karin Kandananond, 2011. "Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach," Energies, MDPI, vol. 4(8), pages 1-12, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Davut Solyali, 2020. "A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus," Sustainability, MDPI, vol. 12(9), pages 1-34, April.
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Jessica Hermanns & Marcel Modemann & Kamil Korotkiewicz & Frederik Paulat & Kevin Kotthaus & Sven Pack & Markus Zdrallek, 2020. "Evaluation of Different Development Possibilities of Distribution Grid State Forecasts," Energies, MDPI, vol. 13(8), pages 1-17, April.
- Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
- Eva Lucas Segarra & Hu Du & Germán Ramos Ruiz & Carlos Fernández Bandera, 2019. "Methodology for the Quantification of the Impact of Weather Forecasts in Predictive Simulation Models," Energies, MDPI, vol. 12(7), pages 1-16, April.
- Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
- Sarah Hadri & Mehdi Najib & Mohamed Bakhouya & Youssef Fakhri & Mohamed El Arroussi, 2021. "Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rodriguez-Alvarez, Ana & Llorca, Manuel & Jamasb, Tooraj, 2021.
"Alleviating energy poverty in Europe: Front-runners and laggards,"
Energy Economics, Elsevier, vol. 103(C).
- Rodríguez-Álvarez, Ana & Llorca, Manuel & Jamasb, Tooraj, 2021. "Alleviating Energy Poverty in Europe: Front-runners and Laggards," Working Papers 12-2021, Copenhagen Business School, Department of Economics.
- Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
- Roberto Barrella & José Carlos Romero & Lucía Mariño, 2022. "Proposing a Novel Minimum Income Standard Approach to Energy Poverty Assessment: A European Case Study," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
- Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
- Ye, Yuxiang & Koch, Steven F., 2021.
"Measuring energy poverty in South Africa based on household required energy consumption,"
Energy Economics, Elsevier, vol. 103(C).
- Steven F. Koch & Yuxiang Yeú, 2020. "Measuring energy poverty in South Africa based on household required energy consumption," Working Papers 843, Economic Research Southern Africa.
- Yuxiang Ye & Steven F. Koch, 2020. "Measuring Energy Poverty in South Africa Based on Household Required Energy Consumption," Working Papers 2020108, University of Pretoria, Department of Economics.
- Mohamed El-Hendawi & Hossam A. Gabbar & Gaber El-Saady & El-Nobi A. Ibrahim, 2018. "Control and EMS of a Grid-Connected Microgrid with Economical Analysis," Energies, MDPI, vol. 11(1), pages 1-20, January.
- Ma, Cong & Cheok, Mui Yee, 2022. "The impact of financing role and organizational culture in small and medium enterprises: Developing business strategies for economic recovery," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 26-38.
- Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
- Charlier, Dorothée & Legendre, Bérangère, 2021. "Fuel poverty in industrialized countries: Definition, measures and policy implications a review," Energy, Elsevier, vol. 236(C).
- Mara Hammerle & Paul J. Burke, 2022.
"Solar PV and energy poverty in Australia's residential sector,"
Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 822-841, October.
- Hammerle, Mara & Burke, Paul J., 2022. "Solar PV and energy poverty in Australia's residential sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(04), January.
- Mara Hammerle & Paul J. Burke, 2022. "Solar PV and energy poverty in Australia's residential sector," CCEP Working Papers 2203, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
- Ricardo Vazquez & Hortensia Amaris & Monica Alonso & Gregorio Lopez & Jose Ignacio Moreno & Daniel Olmeda & Javier Coca, 2017. "Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project," Energies, MDPI, vol. 10(2), pages 1-23, February.
- Best, Rohan & Sinha, Kompal, 2021. "Fuel poverty policy: Go big or go home insulation," Energy Economics, Elsevier, vol. 97(C).
- Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
- Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
- Chaton, Corinne & Lacroix, Elie, 2018.
"Does France have a fuel poverty trap?,"
Energy Policy, Elsevier, vol. 113(C), pages 258-268.
- Corinne Chaton & Elie Lacroix, 2018. "Does France have a fuel poverty trap?," Post-Print halshs-03983391, HAL.
- Lin, Boqiang & Okyere, Michael Adu, 2023. "Race and energy poverty: The moderating role of subsidies in South Africa," Energy Economics, Elsevier, vol. 117(C).
- Lee, Chien-Chiang & Xing, Wenwu & Lee, Chi-Chuan, 2022. "The impact of energy security on income inequality: The key role of economic development," Energy, Elsevier, vol. 248(C).
- Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
- Fry, Jane M. & Farrell, Lisa & Temple, Jeromey B., 2022. "Energy poverty and retirement income sources in Australia," Energy Economics, Elsevier, vol. 106(C).
- Yuchun Li & Yinghua Han & Jinkuan Wang & Qiang Zhao, 2018. "A MBCRF Algorithm Based on Ensemble Learning for Building Demand Response Considering the Thermal Comfort," Energies, MDPI, vol. 11(12), pages 1-20, December.
More about this item
Keywords
ANN; PCA; MRA; district energy management; smart grid; smart cities; demand forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1073-:d:105764. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.