IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000780.html
   My bibliography  Save this article

Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea

Author

Listed:
  • Kim, Ju-Hee
  • Kim, Hee-Hoon
  • Yoo, Seung-Hoon

Abstract

Both nuclear and coal-fired power plants and much of renewable energy are being or will be built in areas far away from the demand for electricity in South Korea. Since social conflicts over building power transmission facilities are growing, the government is trying to increase distributed energy sources including combined heat and power (CHP). This article gathered data on the social acceptance toward constructing a CHP plant near people's dwellings on a 9-point scale from a survey of 1000 people, and identified and investigated the factors affecting the social acceptance adopting an ordered probit model. 54.0% and 12.7% of all interviewees agreed with and opposed to the construction of a CHP plant near their dwellings, respectively, with the former being about 4.3 times more than the latter. The model secured statistical significance and various findings emerged from the results. For example, people who were living in the Seoul Metropolitan area, people with a small number of family members, old people, high-educated people, and high-income people were more receptive to the construction than others. Moreover, several implications derived during the survey were discussed from the perspective of enhancing the social acceptance.

Suggested Citation

  • Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000780
    DOI: 10.1016/j.energy.2022.123175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angenendt, Georg & Zurmühlen, Sebastian & Figgener, Jan & Kairies, Kai-Philipp & Sauer, Dirk Uwe, 2020. "Providing frequency control reserve with photovoltaic battery energy storage systems and power-to-heat coupling," Energy, Elsevier, vol. 194(C).
    2. Hyo-Jin Kim & Jeong-Joon Yu & Seung-Hoon Yoo, 2019. "Does Combined Heat and Power Play the Role of a Bridge in Energy Transition? Evidence from a Cross-Country Analysis," Sustainability, MDPI, vol. 11(4), pages 1-8, February.
    3. Herz, Gregor & Rix, Christopher & Jacobasch, Eric & Müller, Nils & Reichelt, Erik & Jahn, Matthias & Michaelis, Alexander, 2021. "Economic assessment of Power-to-Liquid processes – Influence of electrolysis technology and operating conditions," Applied Energy, Elsevier, vol. 292(C).
    4. Sovacool, Benjamin K. & Lakshmi Ratan, Pushkala, 2012. "Conceptualizing the acceptance of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5268-5279.
    5. Huijts, N.M.A. & De Groot, J.I.M. & Molin, E.J.E. & van Wee, B., 2013. "Intention to act towards a local hydrogen refueling facility: Moral considerations versus self-interest," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 63-74.
    6. Martin, Elliot & Shaheen, Susan A & Lipman, Timothy E & Lidicker, Jeffrey R, 2009. "Behavioral response to hydrogen fuel cell vehicles and refueling: Results of California drive clinics," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt20c342sp, Institute of Transportation Studies, UC Berkeley.
    7. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Åberg, Magnus & Lingfors, David & Olauson, Jon & Widén, Joakim, 2019. "Can electricity market prices control power-to-heat production for peak shaving of renewable power generation? The case of Sweden," Energy, Elsevier, vol. 176(C), pages 1-14.
    9. Hall, N. & Ashworth, P. & Devine-Wright, P., 2013. "Societal acceptance of wind farms: Analysis of four common themes across Australian case studies," Energy Policy, Elsevier, vol. 58(C), pages 200-208.
    10. O'Garra, Tanya & Mourato, Susana & Pearson, Peter, 2008. "Investigating attitudes to hydrogen refuelling facilities and the social cost to local residents," Energy Policy, Elsevier, vol. 36(6), pages 2074-2085, June.
    11. Agrell, Per J. & Bogetoft, Peter, 2005. "Economic and environmental efficiency of district heating plants," Energy Policy, Elsevier, vol. 33(10), pages 1351-1362, July.
    12. Gea-Bermúdez, Juan & Jensen, Ida Græsted & Münster, Marie & Koivisto, Matti & Kirkerud, Jon Gustav & Chen, Yi-kuang & Ravn, Hans, 2021. "The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050," Applied Energy, Elsevier, vol. 289(C).
    13. Hu, Xiaoli & Zhu, Weiwei & Wei, Jiuchang, 2021. "Effects of information strategies on public acceptance of nuclear energy," Energy, Elsevier, vol. 231(C).
    14. Min, Jeoung-Sik & Lim, Seul-Ye & Yoo, Seung-Hoon, 2019. "Economic output-maximizing share of combined heat and power generation: The case of South Korea," Energy Policy, Elsevier, vol. 132(C), pages 1087-1091.
    15. Raven, R.P.J.M. & Mourik, R.M. & Feenstra, C.F.J. & Heiskanen, E., 2009. "Modulating societal acceptance in new energy projects: Towards a toolkit methodology for project managers," Energy, Elsevier, vol. 34(5), pages 564-574.
    16. Tarigan, Ari K.M. & Bayer, Stian B., 2012. "Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5535-5544.
    17. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    18. Sneum, Daniel Møller & González, Mario Garzón & Gea-Bermúdez, Juan, 2021. "Increased heat-electricity sector coupling by constraining biomass use?," Energy, Elsevier, vol. 222(C).
    19. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    20. Zhao, Xiaoli & Cai, Qiong & Li, Shujie & Ma, Chunbo, 2018. "Public preferences for biomass electricity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 242-253.
    21. Devine-Wright, Patrick & Batel, Susana & Aas, Oystein & Sovacool, Benjamin & Labelle, Michael Carnegie & Ruud, Audun, 2017. "A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage," Energy Policy, Elsevier, vol. 107(C), pages 27-31.
    22. Murray, Portia & Carmeliet, Jan & Orehounig, Kristina, 2020. "Multi-Objective Optimisation of Power-to-Mobility in Decentralised Multi-Energy Systems," Energy, Elsevier, vol. 205(C).
    23. Nuortimo, Kalle & Härkönen, Janne, 2018. "Opinion mining approach to study media-image of energy production. Implications to public acceptance and market deployment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 210-217.
    24. Tabi, Andrea & Wüstenhagen, Rolf, 2017. "Keep it local and fish-friendly: Social acceptance of hydropower projects in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 763-773.
    25. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    26. Bianchi, Michele & Branchini, Lisa & De Pascale, Andrea & Peretto, Antonio, 2014. "Application of environmental performance assessment of CHP systems with local and global approaches," Applied Energy, Elsevier, vol. 130(C), pages 774-782.
    27. Schweiger, Gerald & Rantzer, Jonatan & Ericsson, Karin & Lauenburg, Patrick, 2017. "The potential of power-to-heat in Swedish district heating systems," Energy, Elsevier, vol. 137(C), pages 661-669.
    28. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    29. Ga-Eun Kim & Hye-Jeong Lee & Seung-Hoon Yoo, 2018. "Willingness to Pay for Substituting Coal with Natural Gas-Based Combined Heat and Power in South Korea: A View from Air Pollutants Emissions Mitigation," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    30. Hee-Cheon Ju & Seung-Hoon Yoo, 2014. "The environmental cost of overhead power transmission lines: the case of Korea," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 57(6), pages 812-828, June.
    31. Kim, Hyo-Jin & Lim, Seul-Ye & Yoo, Seung-Hoon, 2017. "Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power," Energy Policy, Elsevier, vol. 102(C), pages 125-131.
    32. Dowd, Anne-Maree & Boughen, Naomi & Ashworth, Peta & Carr-Cornish, Simone, 2011. "Geothermal technology in Australia: Investigating social acceptance," Energy Policy, Elsevier, vol. 39(10), pages 6301-6307, October.
    33. Roach, Martin & Meeus, Leonardo, 2020. "The welfare and price effects of sector coupling with power-to-gas," Energy Economics, Elsevier, vol. 86(C).
    34. Seo-Hyeon Min & Seul-Ye Lim & Seung-Hoon Yoo, 2017. "The environmental benefits of reducing thermal discharge from nuclear power generation," Energy & Environment, , vol. 28(8), pages 885-894, December.
    35. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2020. "How and when does information publicity affect public acceptance of nuclear energy?," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wójtowicz-Wróbel, Agnieszka & Kania, Olga & Kocewiak, Katarzyna & Wójtowicz, Ryszard & Dzierwa, Piotr & Trojan, Marcin, 2023. "Thermal-flow calculations for a thermal waste treatment plant and CFD modelling of the spread of gases in the context of urban structures," Energy, Elsevier, vol. 263(PD).
    2. Ju-Hee Kim & Young-Kuk Kim & Seung-Hoon Yoo, 2023. "Does Proximity to a Power Plant Affect Housing Property Values of a City in South Korea? An Empirical Investigation," Energies, MDPI, vol. 16(4), pages 1-14, February.
    3. Changhyun Kim & Minh-Chau Dinh & Hae-Jin Sung & Kyong-Hwan Kim & Jeong-Ho Choi & Lukas Graber & In-Keun Yu & Minwon Park, 2022. "Design, Implementation, and Evaluation of an Output Prediction Model of the 10 MW Floating Offshore Wind Turbine for a Digital Twin," Energies, MDPI, vol. 15(17), pages 1-16, August.
    4. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2023. "Does district heating affect residential property prices? Case study of an urban area in South Korea," Utilities Policy, Elsevier, vol. 83(C).
    5. Cao, Yue & Hu, Hui & Chen, Ranjing & He, Tianyu & Si, Fengqi, 2023. "Comparative analysis on thermodynamic performance of combined heat and power system employing steam ejector as cascaded heat sink," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    2. Hyung-Seok Jeong & Ju-Hee Kim & Seung-Hoon Yoo, 2021. "South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    3. Hyo-Jin Kim & Jeong-Joon Yu & Seung-Hoon Yoo, 2019. "Does Combined Heat and Power Play the Role of a Bridge in Energy Transition? Evidence from a Cross-Country Analysis," Sustainability, MDPI, vol. 11(4), pages 1-8, February.
    4. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2023. "Does district heating affect residential property prices? Case study of an urban area in South Korea," Utilities Policy, Elsevier, vol. 83(C).
    5. Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Min, Jeoung-Sik & Lim, Seul-Ye & Yoo, Seung-Hoon, 2019. "Economic output-maximizing share of combined heat and power generation: The case of South Korea," Energy Policy, Elsevier, vol. 132(C), pages 1087-1091.
    8. Kânoğlu-Özkan, Dilge Güldehen & Soytaş, Uğur, 2022. "The social acceptance of shale gas development: Evidence from Turkey," Energy, Elsevier, vol. 239(PC).
    9. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    10. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    11. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    12. Simone Carr-Cornish & Lygia Romanach, 2014. "Differences in Public Perceptions of Geothermal Energy Technology in Australia," Energies, MDPI, vol. 7(3), pages 1-21, March.
    13. Busse, Maria & Siebert, Rosemarie, 2018. "Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability," Land Use Policy, Elsevier, vol. 76(C), pages 235-245.
    14. Hyland, Marie & Bertsch, Valentin, 2018. "The Role of Community Involvement Mechanisms in Reducing Resistance to Energy Infrastructure Development," Ecological Economics, Elsevier, vol. 146(C), pages 447-474.
    15. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Altsitsiadis, E. & Kaiser, M. & Tsakas, A. & Kyriakidis, A. & Stamos, A., 2024. "Investigating the Regional and Individual Drivers of the Support for Renewable Energy Transition: The Role of Severe Material Deprivation," Cambridge Working Papers in Economics 2419, Faculty of Economics, University of Cambridge.
    17. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    19. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Price promises, trust deficits and energy justice: Public perceptions of hydrogen homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Hitzeroth, Marion & Megerle, Andreas, 2013. "Renewable Energy Projects: Acceptance Risks and Their Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 576-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.