IDEAS home Printed from https://ideas.repec.org/r/oup/biomet/v97y2010i2p465-480.html
   My bibliography  Save this item

The horseshoe estimator for sparse signals

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
  2. Sourish Das & Rituparna Sen, 2021. "Sparse Portfolio Selection via Bayesian Multiple Testing," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 585-617, November.
  3. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
  4. Christos Merkatas & Simo Särkkä, 2023. "System identification using autoregressive Bayesian neural networks with nonparametric noise models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 319-330, May.
  5. Annalisa Cadonna & Sylvia Fruhwirth-Schnatter & Peter Knaus, 2019. "Triple the gamma -- A unifying shrinkage prior for variance and variable selection in sparse state space and TVP models," Papers 1912.03100, arXiv.org.
  6. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
  7. Ando, Tomohiro & Bai, Jushan & Li, Kunpeng, 2022. "Bayesian and maximum likelihood analysis of large-scale panel choice models with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 230(1), pages 20-38.
  8. Agnese Maria Di Brisco & Sonia Migliorati, 2021. "A spatial mixed-effects regression model for electoral data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 543-571, June.
  9. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
  10. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
  11. Zhen Yu & Keming Yu & Wolfgang K. Härdle & Xueliang Zhang & Kai Wang & Maozai Tian, 2022. "Bayesian spatio‐temporal modeling for the inpatient hospital costs of alcohol‐related disorders," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 644-667, December.
  12. Alexandre C. Siqueira & Wolfgang Kiessling & David R. Bellwood, 2022. "Fast-growing species shape the evolution of reef corals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  13. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
  14. Dimitris Korobilis & Maximilian Schroder, 2023. "Monitoring multicountry macroeconomic risk," Papers 2305.09563, arXiv.org.
  15. Niko Hauzenberger & Florian Huber & Luca Onorante, 2021. "Combining shrinkage and sparsity in conjugate vector autoregressive models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 304-327, April.
  16. Michele Costola & Matteo Iacopini & Casper Wichers, 2023. "Bayesian SAR model with stochastic volatility and multiple time-varying weights," Papers 2310.17473, arXiv.org.
  17. Follett, Lendie & Yu, Cindy, 2019. "Achieving parsimony in Bayesian vector autoregressions with the horseshoe prior," Econometrics and Statistics, Elsevier, vol. 11(C), pages 130-144.
  18. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
  19. Kaito Shimamura & Shuichi Kawano, 2021. "Bayesian sparse convex clustering via global-local shrinkage priors," Computational Statistics, Springer, vol. 36(4), pages 2671-2699, December.
  20. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
  21. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
  22. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
  23. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
  24. Yunxi Zhang & Soeun Kim, 2024. "Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators," Mathematics, MDPI, vol. 12(12), pages 1-15, June.
  25. Prüser, Jan, 2021. "The horseshoe prior for time-varying parameter VARs and Monetary Policy," Journal of Economic Dynamics and Control, Elsevier, vol. 129(C).
  26. Bhattacharya, Anirban & Dunson, David B. & Pati, Debdeep & Pillai, Natesh S., 2016. "Sub-optimality of some continuous shrinkage priors," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3828-3842.
  27. Moramarco, Graziano, 2024. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," International Journal of Forecasting, Elsevier, vol. 40(2), pages 777-795.
  28. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
  29. Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic forecasting in a multi‐country context," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
  30. Saikat Saha, 2015. "Noise Robust Online Inference for Linear Dynamic Systems," Papers 1504.05723, arXiv.org.
  31. Yanyi Song & Xiang Zhou & Jian Kang & Max T. Aung & Min Zhang & Wei Zhao & Belinda L. Needham & Sharon L. R. Kardia & Yongmei Liu & John D. Meeker & Jennifer A. Smith & Bhramar Mukherjee, 2021. "Bayesian sparse mediation analysis with targeted penalization of natural indirect effects," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1391-1412, November.
  32. Xingqi Du & Subhashis Ghosal, 2018. "Bayesian Discriminant Analysis Using a High Dimensional Predictor," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 112-145, December.
  33. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
  34. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
  35. Leamer, Edward E., 2016. "S-values and Bayesian weighted all-subsets regressions," European Economic Review, Elsevier, vol. 81(C), pages 15-31.
  36. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
  37. Annalisa Cadonna & Sylvia Frühwirth-Schnatter & Peter Knaus, 2020. "Triple the Gamma—A Unifying Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models," Econometrics, MDPI, vol. 8(2), pages 1-36, May.
  38. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  39. Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
  40. Måns Magnusson & Leif Jonsson & Mattias Villani, 2020. "DOLDA: a regularized supervised topic model for high-dimensional multi-class regression," Computational Statistics, Springer, vol. 35(1), pages 175-201, March.
  41. Meager, Rachael, 2019. "Understanding the average impact of microcredit expansions: a Bayesian hierarchical analysis of seven randomized experiments," LSE Research Online Documents on Economics 88190, London School of Economics and Political Science, LSE Library.
  42. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 1-22, August.
  43. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
  44. Youssef M Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2020. "Sparse Covariance Estimation in Logit Mixture Models," Papers 2001.05034, arXiv.org.
  45. Hauzenberger, Niko & Pfarrhofer, Michael & Stelzer, Anna, 2021. "On the effectiveness of the European Central Bank’s conventional and unconventional policies under uncertainty," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 822-845.
  46. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
  47. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
  48. Hauzenberger Niko & Huber Florian & Koop Gary, 2024. "Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
  49. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
  50. Joshua Lukemire & Giuseppe Pagnoni & Ying Guo, 2023. "Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3599-3611, December.
  51. P. Richard Hahn & Carlos M. Carvalho, 2015. "Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 435-448, March.
  52. Atchadé, Yves F., 2019. "Quasi-Bayesian estimation of large Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 656-671.
  53. Sylvia Fruhwirth-Schnatter & Peter Knaus, 2022. "Sparse Bayesian State-Space and Time-Varying Parameter Models," Papers 2207.12147, arXiv.org.
  54. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
  55. Michael Bergrab & Christian Aßmann, 2024. "Automated Bayesian variable selection methods for binary regression models with missing covariate data," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 18(2), pages 203-244, June.
  56. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
  57. Jan van den Brakel & Martijn Souren & Sabine Krieg, 2022. "Estimating monthly labour force figures during the COVID‐19 pandemic in the Netherlands," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1560-1583, October.
  58. Korobilis, Dimitris & Landau, Bettina & Musso, Alberto & Phella, Anthoulla, 2021. "The time-varying evolution of inflation risks," Working Paper Series 2600, European Central Bank.
  59. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
  60. Jiayi Luo & Cindy Long Yu, 2021. "Determining Number of Factors in Dynamic Factor Models Contributing to GDP Nowcasting," Mathematics, MDPI, vol. 9(22), pages 1-23, November.
  61. Florian Huber & Michael Pfarrhofer, 2021. "Dynamic shrinkage in time‐varying parameter stochastic volatility in mean models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 262-270, March.
  62. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
  63. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Papers 2020_21, Business School - Economics, University of Glasgow.
  64. Adam N. Smith & Jim E. Griffin, 2023. "Shrinkage priors for high-dimensional demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 21(1), pages 95-146, March.
  65. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
  66. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.
  67. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
  68. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
  69. Bettina Grün & Paul Hofmarcher, 2021. "Identifying groups of determinants in Bayesian model averaging using Dirichlet process clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1018-1045, September.
  70. Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
  71. Niko Hauzenberger & Michael Pfarrhofer & Luca Rossini, 2020. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," Papers 2011.04577, arXiv.org, revised Apr 2023.
  72. Anna Stelzer, 2023. "Monetary policy and the joint distribution of income and wealth: The heterogeneous case of the euro area," Papers 2304.14264, arXiv.org.
  73. Griffin Jim E. & Hinoveanu Laurenţiu C. & Hopker James G., 2022. "Bayesian modelling of elite sporting performance with large databases," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 18(4), pages 253-268, December.
  74. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
  75. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
  76. Fischer, Manfred M. & Hauzenberger, Niko & Huber, Florian & Pfarrhofer, Michael, 2022. "General Bayesian time-varying parameter VARs for modeling government bond yields," Working Papers in Regional Science 2021/01, WU Vienna University of Economics and Business.
  77. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
  78. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
  79. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
  80. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
  81. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
  82. Niko Hauzenberger & Florian Huber & Karin Klieber & Massimiliano Marcellino, 2022. "Bayesian Neural Networks for Macroeconomic Analysis," Papers 2211.04752, arXiv.org, revised Apr 2024.
  83. Chuan Gao & Ian C McDowell & Shiwen Zhao & Christopher D Brown & Barbara E Engelhardt, 2016. "Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-39, July.
  84. Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
  85. Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
  86. Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
  87. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
  88. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.
  89. Emma Schwager & Himel Mallick & Steffen Ventz & Curtis Huttenhower, 2017. "A Bayesian method for detecting pairwise associations in compositional data," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-21, November.
  90. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
  91. Friederike L. Pennemann & Assel Mussabekova & Christian Urban & Alexey Stukalov & Line Lykke Andersen & Vincent Grass & Teresa Maria Lavacca & Cathleen Holze & Lila Oubraham & Yasmine Benamrouche & En, 2021. "Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
  92. Anindya Bhadra & Jyotishka Datta & Yunfan Li & Nicholas Polson, 2020. "Horseshoe Regularisation for Machine Learning in Complex and Deep Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 302-320, August.
  93. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
  94. Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.
  95. Yize Zhao & Ben Wu & Jian Kang, 2023. "Bayesian interaction selection model for multimodal neuroimaging data analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 655-668, June.
  96. Naveen Naidu Narisetty, 2020. "Discussion," International Statistical Review, International Statistical Institute, vol. 88(2), pages 330-334, August.
  97. Anwen Yin, 2022. "Does the kitchen‐sink model work forecasting the equity premium?," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 223-247, March.
  98. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
  99. Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
  100. Yi Nengjun & Ma Shuangge, 2012. "Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-25, November.
  101. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
  102. Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org.
  103. You Wu & Jeremy Gaskins & Maiying Kong & Susmita Datta, 2018. "Profiling the effects of short time†course cold ischemia on tumor protein phosphorylation using a Bayesian approach," Biometrics, The International Biometric Society, vol. 74(1), pages 331-341, March.
  104. Jing Zhou & Anirban Bhattacharya & Amy H. Herring & David B. Dunson, 2015. "Bayesian Factorizations of Big Sparse Tensors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1562-1576, December.
  105. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
  106. Rachael Meager, 2015. "Understanding the Impact of Microcredit Expansions: A Bayesian Hierarchical Analysis of 7 Randomised Experiments," Papers 1506.06669, arXiv.org, revised Jul 2016.
  107. Andrew J. Womack & Luis León-Novelo & George Casella, 2014. "Inference From Intrinsic Bayes' Procedures Under Model Selection and Uncertainty," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1040-1053, September.
  108. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  109. Zhang, Ruoyang & Ghosh, Malay, 2022. "Ultra high-dimensional multivariate posterior contraction rate under shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
  110. Paul Labonne & Leif Anders Thorsrud, 2023. "Risky news and credit market sentiment," Working Papers No 14/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  111. Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
  112. Ryan Martin & Bo Ning, 2020. "Empirical Priors and Coverage of Posterior Credible Sets in a Sparse Normal Mean Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 477-498, August.
  113. Boonstra, Philip S. & Barbaro, Ryan P. & Sen, Ananda, 2019. "Default priors for the intercept parameter in logistic regressions," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 245-256.
  114. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
  115. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
  116. Tyler H. McCormick & Adrian E. Raftery & David Madigan & Randall S. Burd, 2012. "Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification," Biometrics, The International Biometric Society, vol. 68(1), pages 23-30, March.
  117. Lee, Kyoungjae & Jo, Seongil & Lee, Jaeyong, 2022. "The beta-mixture shrinkage prior for sparse covariances with near-minimax posterior convergence rate," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  118. Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2023. "General Bayesian time‐varying parameter vector autoregressions for modeling government bond yields," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 69-87, January.
  119. Sifat, Imtiaz & Zarei, Alireza & Hosseini, Seyedmehdi & Bouri, Elie, 2022. "Interbank liquidity risk transmission to large emerging markets in crisis periods," International Review of Financial Analysis, Elsevier, vol. 82(C).
  120. Marco Molinari & Andrea Cremaschi & Maria De Iorio & Nishi Chaturvedi & Alun D. Hughes & Therese Tillin, 2022. "Bayesian nonparametric modelling of multiple graphs with an application to ethnic metabolic differences," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1181-1204, November.
  121. Nicholas G. Polson & James G. Scott, 2016. "Mixtures, envelopes and hierarchical duality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 701-727, September.
  122. Kelly R. Moran & Matthew W. Wheeler, 2022. "Fast increased fidelity samplers for approximate Bayesian Gaussian process regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1198-1228, September.
  123. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
  124. Anastasia Dimiski, 2020. "Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset," Working Papers 2004, University of Guelph, Department of Economics and Finance.
  125. James R. Faulkner & Andrew F. Magee & Beth Shapiro & Vladimir N. Minin, 2020. "Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories," Biometrics, The International Biometric Society, vol. 76(3), pages 677-690, September.
  126. Guhaniyogi, Rajarshi, 2017. "Convergence rate of Bayesian supervised tensor modeling with multiway shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 157-168.
  127. Harm Jan Boonstra & Jan van den Brakel & Sumonkanti Das, 2021. "Multilevel time series modelling of mobility trends in the Netherlands for small domains," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 985-1007, July.
  128. Paolo Onorati & Brunero Liseo, 2022. "Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior," Stats, MDPI, vol. 5(4), pages 1-17, November.
  129. Florian Huber & Gary Koop & Massimiliano Marcellino & Tobias Scheckel, 2024. "Bayesian modelling of VAR precision matrices using stochastic block networks," Papers 2407.16349, arXiv.org.
  130. Brian J. Reich & Joseph Guinness & Simon N. Vandekar & Russell T. Shinohara & Ana†Maria Staicu, 2018. "Fully Bayesian spectral methods for imaging data," Biometrics, The International Biometric Society, vol. 74(2), pages 645-652, June.
  131. Li, Hanning & Pati, Debdeep, 2017. "Variable selection using shrinkage priors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 107-119.
  132. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
  133. Leonhard Held & Rafael Sauter, 2017. "Adaptive prior weighting in generalized regression," Biometrics, The International Biometric Society, vol. 73(1), pages 242-251, March.
  134. Okudo, Michiko & Komaki, Fumiyasu, 2021. "Shrinkage priors for single-spiked covariance models," Statistics & Probability Letters, Elsevier, vol. 176(C).
  135. Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
  136. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
  137. Donegan, Connor & Chun, Yongwan & Hughes, Amy E., 2020. "Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors," OSF Preprints fah3z, Center for Open Science.
  138. Paul A. Parker & Scott H. Holan, 2023. "A Bayesian functional data model for surveys collected under informative sampling with application to mortality estimation using NHANES," Biometrics, The International Biometric Society, vol. 79(2), pages 1397-1408, June.
  139. repec:wrk:wrkemf:34 is not listed on IDEAS
  140. Deborah Gefang & Stephen G. Hall & George S. Tavlas, 2023. "Identifying spatial interdependence in panel data with large N and small T," Papers 2309.03740, arXiv.org.
  141. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
  142. Sakae Oya & Teruo Nakatsuma, 2021. "Identification in Bayesian Estimation of the Skewness Matrix in a Multivariate Skew-Elliptical Distribution," Papers 2108.04019, arXiv.org.
  143. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
  144. Gefang, Deborah & Hall, Stephen G. & Tavlas, George S. & Wang, Yongli, 2024. "Quantifying spillovers among regions," Journal of International Money and Finance, Elsevier, vol. 140(C).
  145. Mingan Yang, 2020. "Bayesian Mixed Effects Model with Variable Selection," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 10(2), pages 27-29, August.
  146. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Nov 2024.
  147. Joshua S. North & Christopher K. Wikle & Erin M. Schliep, 2023. "A Review of Data‐Driven Discovery for Dynamic Systems," International Statistical Review, International Statistical Institute, vol. 91(3), pages 464-492, December.
  148. Prüser, Jan & Blagov, Boris, 2022. "Improving inference and forecasting in VAR models using cross-sectional information," Ruhr Economic Papers 960, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  149. Monica Billio & Roberto Casarin & Matteo Iacopini & Sylvia Kaufmann, 2023. "Bayesian Dynamic Tensor Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 429-439, April.
  150. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2021. "The Horseshoe-Like Regularization for Feature Subset Selection," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 185-214, May.
  151. Baltodano López Ovielt & Bulfone Giacomo & Casarin Roberto & Ravazzolo Francesco, 2024. "Modeling Corporate CDS Spreads Using Markov Switching Regressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 271-292, April.
  152. Kohn, Robert & Nguyen, Nghia & Nott, David & Tran, Minh-Ngoc, 2017. "Random Effects Models with Deep Neural Network Basis Functions: Methodology and Computation," Working Papers 2123/17877, University of Sydney Business School, Discipline of Business Analytics.
  153. Daniel Mork & Ander Wilson, 2023. "Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs," Biometrics, The International Biometric Society, vol. 79(1), pages 449-461, March.
  154. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
  155. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
  156. Robert B. Gramacy, 2020. "Discussion," International Statistical Review, International Statistical Institute, vol. 88(2), pages 326-329, August.
  157. Hamura, Yasuyuki & Irie, Kaoru & Sugasawa, Shonosuke, 2022. "Log-regularly varying scale mixture of normals for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  158. Sun, Peng & Kim, Inyoung & Lee, Ki-Ahm, 2018. "Dual-semiparametric regression using weighted Dirichlet process mixture," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 162-181.
  159. Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2021. "General Bayesian time-varying parameter VARs for predicting government bond yields," Papers 2102.13393, arXiv.org.
  160. Xueying Tang & Xiaofan Xu & Malay Ghosh & Prasenjit Ghosh, 2018. "Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 215-246, August.
  161. Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
  162. Li, Yunfan & Datta, Jyotishka & Craig, Bruce A. & Bhadra, Anindya, 2021. "Joint mean–covariance estimation via the horseshoe," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
  163. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
  164. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
  165. Ouyang, Jiangrong & Bondell, Howard, 2023. "Bayesian analysis of longitudinal data via empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
  166. L Schiavon & A Canale & D B Dunson, 2022. "Generalized infinite factorization models [A latent factor linear mixed model for high-dimensional longitudinal data analysis]," Biometrika, Biometrika Trust, vol. 109(3), pages 817-835.
  167. Se Yoon Lee & Bowen Lei & Bani Mallick, 2020. "Estimation of COVID-19 spread curves integrating global data and borrowing information," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
  168. Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
  169. Onizuka, Takahiro & Iwashige, Fumiya & Hashimoto, Shintaro, 2024. "Bayesian boundary trend filtering," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
  170. Cássio Roberto de Andrade Alves & Márcio Laurini, 2023. "Estimating the Capital Asset Pricing Model with Many Instruments: A Bayesian Shrinkage Approach," Mathematics, MDPI, vol. 11(17), pages 1-20, September.
  171. Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
  172. Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
  173. Jarod Smith & Mohammad Arashi & Andriëtte Bekker, 2022. "Empowering differential networks using Bayesian analysis," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.
  174. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Variational inference for large Bayesian vector autoregressions," Papers 2202.12644, arXiv.org, revised Jun 2023.
  175. M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
  176. Debamita Kundu & Sungduk Kim & Mary H. Ward & Paul S. Albert, 2024. "A Comparison of Statistical Methods for Studying Interactions of Chemical Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 503-519, July.
  177. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
  178. Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
  179. Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
  180. Hamura, Yasuyuki & Irie, Kaoru & Sugasawa, Shonosuke, 2024. "Posterior robustness with milder conditions: Contamination models revisited," Statistics & Probability Letters, Elsevier, vol. 210(C).
  181. Sakae Oya, 2022. "A Bayesian Graphical Approach for Large-Scale Portfolio Management with Fewer Historical Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(3), pages 507-526, September.
  182. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
  183. Costola, Michele & Iacopini, Matteo & Wichers, Casper, 2023. "Bayesian SAR model with stochastic volatility and multiple time-varying weights," SAFE Working Paper Series 407, Leibniz Institute for Financial Research SAFE.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.