IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v210y2024ics0167715224000993.html
   My bibliography  Save this article

Posterior robustness with milder conditions: Contamination models revisited

Author

Listed:
  • Hamura, Yasuyuki
  • Irie, Kaoru
  • Sugasawa, Shonosuke

Abstract

Robust Bayesian linear regression is a classical but essential statistical tool. Although novel robustness properties of posterior distributions have been proved recently under a certain class of error distributions, their sufficient conditions are restrictive and exclude several important situations. In this work, we revisit a classical two-component mixture model for response variables, also known as contamination model, where one component is a light-tailed regression model and the other component is heavy-tailed. The latter component is independent of the regression parameters, which is crucial in proving the posterior robustness. We obtain new sufficient conditions for posterior (non-)robustness and reveal non-trivial robustness results by using those conditions. In particular, we find that even the Student-t error distribution can achieve the posterior robustness in our framework. A numerical study is performed to check the Kullback–Leibler divergence between the posterior distribution based on full data and that based on data obtained by removing outliers.

Suggested Citation

  • Hamura, Yasuyuki & Irie, Kaoru & Sugasawa, Shonosuke, 2024. "Posterior robustness with milder conditions: Contamination models revisited," Statistics & Probability Letters, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:stapro:v:210:y:2024:i:c:s0167715224000993
    DOI: 10.1016/j.spl.2024.110130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224000993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Gagnon, Philippe & Hayashi, Yoshiko, 2023. "Theoretical properties of Bayesian Student-t linear regression," Statistics & Probability Letters, Elsevier, vol. 193(C).
    3. Hamura, Yasuyuki & Irie, Kaoru & Sugasawa, Shonosuke, 2022. "Log-regularly varying scale mixture of normals for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    2. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    3. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    4. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    5. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    6. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    7. Yi Nengjun & Ma Shuangge, 2012. "Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-25, November.
    8. Ryan Martin & Bo Ning, 2020. "Empirical Priors and Coverage of Posterior Credible Sets in a Sparse Normal Mean Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 477-498, August.
    9. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    10. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
    11. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    12. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    13. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    14. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    15. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
    16. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    17. Alexandre C. Siqueira & Wolfgang Kiessling & David R. Bellwood, 2022. "Fast-growing species shape the evolution of reef corals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
    19. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    20. Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic forecasting in a multi‐country context," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:210:y:2024:i:c:s0167715224000993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.