IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3599-3611.html
   My bibliography  Save this article

Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks

Author

Listed:
  • Joshua Lukemire
  • Giuseppe Pagnoni
  • Ying Guo

Abstract

Independent component analysis (ICA) is one of the leading approaches for studying brain functional networks. There is increasing interest in neuroscience studies to investigate individual differences in brain networks and their association with demographic characteristics and clinical outcomes. In this work, we develop a sparse Bayesian group hierarchical ICA model that offers significant improvements over existing ICA techniques for identifying covariate effects on the brain network. Specifically, we model the population‐level ICA source signals for brain networks using a Dirichlet process mixture. To reliably capture individual differences on brain networks, we propose sparse estimation of the covariate effects in the hierarchical ICA model via a horseshoe prior. Through extensive simulation studies, we show that our approach performs considerably better in detecting covariate effects in comparison with the leading group ICA methods. We then perform an ICA decomposition of a between‐subject meditation study. Our method is able to identify significant effects related to meditative practice in brain regions that are consistent with previous research into the default mode network, whereas other group ICA approaches find few to no effects.

Suggested Citation

  • Joshua Lukemire & Giuseppe Pagnoni & Ying Guo, 2023. "Sparse Bayesian modeling of hierarchical independent component analysis: Reliable estimation of individual differences in brain networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3599-3611, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3599-3611
    DOI: 10.1111/biom.13867
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13867
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Amanda F. Mejia & Mary Beth Nebel & Yikai Wang & Brian S. Caffo & Ying Guo, 2020. "Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1151-1177, July.
    3. Ying Guo, 2011. "A General Probabilistic Model for Group Independent Component Analysis and Its Estimation Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1532-1542, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    2. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    3. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    4. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    5. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    6. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    7. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    8. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    9. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    10. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    11. Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
    12. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    13. Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.
    14. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    15. Yi Nengjun & Ma Shuangge, 2012. "Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-25, November.
    16. You Wu & Jeremy Gaskins & Maiying Kong & Susmita Datta, 2018. "Profiling the effects of short time†course cold ischemia on tumor protein phosphorylation using a Bayesian approach," Biometrics, The International Biometric Society, vol. 74(1), pages 331-341, March.
    17. Ryan Martin & Bo Ning, 2020. "Empirical Priors and Coverage of Posterior Credible Sets in a Sparse Normal Mean Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 477-498, August.
    18. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    19. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    20. Sifat, Imtiaz & Zarei, Alireza & Hosseini, Seyedmehdi & Bouri, Elie, 2022. "Interbank liquidity risk transmission to large emerging markets in crisis periods," International Review of Financial Analysis, Elsevier, vol. 82(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3599-3611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.