The time-varying evolution of inflation risks
Author
Abstract
Suggested Citation
Note: 339070
Download full text from publisher
References listed on IDEAS
- Chan, Joshua C.C., 2013.
"Moving average stochastic volatility models with application to inflation forecast,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
- Joshua C C Chan, 2012. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," ANU Working Papers in Economics and Econometrics 2012-591, Australian National University, College of Business and Economics, School of Economics.
- Joshua C.C. Chan, 2013. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," CAMA Working Papers 2013-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Yuliy Sannikov & Markus Brunnermeier, 2012.
"The I Theory of Money,"
2012 Meeting Papers
411, Society for Economic Dynamics.
- Yuliy Sannikov & Markus Brunnermeier, 2013. "The I-Theory of Money," 2013 Meeting Papers 620, Society for Economic Dynamics.
- Brunnermeier, Markus & Sannikov, Yuliy, 2016. "The I Theory of Money," CEPR Discussion Papers 11444, C.E.P.R. Discussion Papers.
- Markus K. Brunnermeier & Yuliy Sannikov, 2016. "The I Theory of Money," NBER Working Papers 22533, National Bureau of Economic Research, Inc.
- Brunnermeier, Markus K. & Sannikov, Yuliy, 2016. "The I Theory of Money," Research Papers 3431, Stanford University, Graduate School of Business.
- Markus K. Brunnermeier & Yuliy Sannikov, 2019. "The I Theory of Money," Working Papers 2016-2, Princeton University. Economics Department..
- Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
- Cai, Zongwu & Xu, Xiaoping, 2009.
"Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
- Cai, Zongwu & Xu, Xiaoping, 2008. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1595-1608.
- Xiaoping Xu & Zongwu Cai, 2013. "Nonparametric Quantile Estimations For Dynamic Smooth Coefficient Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Anindya Bhadra & Jyotishka Datta & Yunfan Li & Nicholas Polson, 2020. "Horseshoe Regularisation for Machine Learning in Complex and Deep Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 302-320, August.
- Richard H. Gerlach & Cathy W. S. Chen & Nancy Y. C. Chan, 2011.
"Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 481-492, October.
- Gerlach, Richard H. & Chen, Cathy W. S. & Chan, Nancy Y. C., 2011. "Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 481-492.
- Chan, Nancy Y. C. & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Bayesian time-varying quantile forecasting for Value-at-Risk in financial markets," Working Papers 9 OMEWP, University of Sydney Business School, Discipline of Business Analytics.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019.
"Vulnerable Growth,"
American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2016. "Vulnerable growth," Staff Reports 794, Federal Reserve Bank of New York.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2018. "Vulnerable Growth," Liberty Street Economics 20180409, Federal Reserve Bank of New York.
- Nina Boyarchenko & Domenico Giannone & Tobias Adrian, 2017. "Vulnerable Growth," 2017 Meeting Papers 1317, Society for Economic Dynamics.
- Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2016. "Vulnerable Growth," CEPR Discussion Papers 11583, C.E.P.R. Discussion Papers.
- Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Rossi, Barbara & Sekhposyan, Tatevik, 2019.
"Alternative tests for correct specification of conditional predictive densities,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
- Barbara Rossi & Tatevik Sekhposyan, 2014. "Alternative tests for correct specification of conditional predictive densities," Economics Working Papers 1416, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2017.
- Barbara Rossi & Tatevik Sekhposyan, 2015. "Alternative Tests for Correct Specification of Conditional Predictive Densities," Working Papers 758, Barcelona School of Economics.
- Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2020.
"Choosing Prior Hyperparameters: With Applications to Time-Varying Parameter Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 124-136, January.
- Wang, Mu-Chun, 2018. "Choosing Prior Hyperparameters: With Applications To Time-Varying Parameter Models," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181621, Verein für Socialpolitik / German Economic Association.
- Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
- Griffin, Jim E. & Mitrodima, Gelly, 2020. "A Bayesian quantile time series model for asset returns," LSE Research Online Documents on Economics 105610, London School of Economics and Political Science, LSE Library.
- Alex Tagliabracci, 2020. "Asymmetry in the conditional distribution of euro-area inflation," Temi di discussione (Economic working papers) 1270, Bank of Italy, Economic Research and International Relations Area.
- James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
- Pooyan Amir-Ahmadi & Christian Matthes & Mu-Chun Wang, 2016. "Choosing Prior Hyperparameters," Working Paper 16-9, Federal Reserve Bank of Richmond.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zheng, Tingguo & Gong, Lu & Ye, Shiqi, 2023. "Global energy market connectedness and inflation at risk," Energy Economics, Elsevier, vol. 126(C).
- Banerjee, Ryan & Contreras, Juan & Mehrotra, Aaron & Zampolli, Fabrizio, 2024. "Inflation at risk in advanced and emerging market economies," Journal of International Money and Finance, Elsevier, vol. 142(C).
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Ignacio Garr'on & C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "International vulnerability of inflation," Papers 2410.20628, arXiv.org, revised Oct 2024.
- James Mitchell & Aubrey Poon & Dan Zhu, 2024.
"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
- James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
- Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2024.
"Investigating Growth-at-Risk Using a Multicountry Nonparametric Quantile Factor Model,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1302-1317, October.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Papers 2110.03411, arXiv.org.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2023. "Investigating Growth-at-Risk Using a Multicountry Non-parametric Quantile Factor Model," CEPR Discussion Papers 18549, C.E.P.R. Discussion Papers.
- Todd Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Working Papers 2307, University of Strathclyde Business School, Department of Economics.
- Holm-Hadulla, Fédéric & Musso, Alberto & Rodriguez-Palenzuela, Diego & Vlassopoulos, Thomas, 2021. "Evolution of the ECB’s analytical framework," Occasional Paper Series 277, European Central Bank.
- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
- policy, Work stream on macroprudential & Policy, Monetary & Stability, Financial & Albertazzi, Ugo & Martin, Alberto & Assouan, Emmanuelle & Tristani, Oreste & Galati, Gabriele & Vlassopoulos, Thomas , 2023. "The role of financial stability considerations in monetary policy and the interaction with macroprudential policy in the euro area," Occasional Paper Series 272, European Central Bank.
- Garrón Vedia, Ignacio & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2024. "International vulnerability of inflation," DES - Working Papers. Statistics and Econometrics. WS 44814, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- policy, Work stream on macroprudential & Albertazzi, Ugo & Martin, Alberto & Assouan, Emmanuelle & Tristani, Oreste & Galati, Gabriele & Vlassopoulos, Thomas, 2021. "The role of financial stability considerations in monetary policy and the interaction with macroprudential policy in the euro area," Occasional Paper Series 272, European Central Bank.
- López-Salido, David & Loria, Francesca, 2024. "Inflation at risk," Journal of Monetary Economics, Elsevier, vol. 145(S).
- Yoshibumi Makabe & Yoshihiko Norimasa, 2022. "The Term Structure of Inflation at Risk: A Panel Quantile Regression Approach," Bank of Japan Working Paper Series 22-E-4, Bank of Japan.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
- Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024.
"Forecasting euro area inflation using a huge panel of survey expectations,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
- Florian Huber & Luca Onorante & Michael Pfarrhofer, 2022. "Forecasting euro area inflation using a huge panel of survey expectations," Papers 2207.12225, arXiv.org.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
- Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021.
"Forecasting macroeconomic risks,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
- Patrick A. Adams & Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2020. "Forecasting Macroeconomic Risks," Staff Reports 914, Federal Reserve Bank of New York.
- Adrian, Tobias & Adams, Patrick & Boyarchenko, Nina & Giannone, Domenico, 2020. "Forecasting Macroeconomic Risks," CEPR Discussion Papers 14436, C.E.P.R. Discussion Papers.
- Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023.
"Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2020. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Papers 2011.07920, arXiv.org, revised Feb 2022.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Eliya Cohen & Allon Hammer & Noam Koenigstein, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," Post-Print emse-04624940, HAL.
- Oren Barkan & Jonathan Benchimol & Itamar Caspi & Allon Hammer & Noam Koenigstein, 2021. "Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks," Bank of Israel Working Papers 2021.06, Bank of Israel.
- Malte Knüppel & Fabian Krüger, 2022.
"Forecast uncertainty, disagreement, and the linear pool,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
- Knüppel, Malte & Krüger, Fabian, 2017. "Forecast Uncertainty, Disagreement, and Linear Pools of Density Forecasts," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168294, Verein für Socialpolitik / German Economic Association.
- Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.
- Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
- Pablo Guerróon‐Quintana & Molin Zhong, 2023.
"Macroeconomic forecasting in times of crises,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
- Pablo Guerrón-Quintana & Molin Zhong, 2017. "Macroeconomic Forecasting in Times of Crises," Finance and Economics Discussion Series 2017-018, Board of Governors of the Federal Reserve System (U.S.).
- Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
- Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
- Manuel M. F. Martins & Fabio Verona, 2024. "Forecasting Inflation with the New Keynesian Phillips Curve: Frequencies Matter," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(4), pages 811-832, August.
- Hervé Le Bihan & Danilo Leiva-León & Matías Pacce, 2023.
"Underlying inflation and asymetric risks,"
Working Papers
2319, Banco de España.
- Le Bihan, Hervé & Leiva-Leon, Danilo & Pacce, Matías, 2023. "Underlying inflation and asymmetric risks," Working Paper Series 2848, European Central Bank.
- Kristin Forbes & Lewis Kirkham & Konstantinos Theodoridis, 2021.
"A Trendy Approach to UK Inflation Dynamics,"
Manchester School, University of Manchester, vol. 89(S1), pages 23-75, September.
- Forbes, Kristin & Kirkham, Lewis & Theodoridis, Konstantinos, 2017. "A trendy approach to UK inflation dynamics," Discussion Papers 49, Monetary Policy Committee Unit, Bank of England.
- Forbes, Kristin & Kirkham, Lewis & Theodoridis, Konstantinos, 2018. "A Trendy Approach to UK Inflation Dynamics," CEPR Discussion Papers 12652, C.E.P.R. Discussion Papers.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
More about this item
Keywords
Bayesian shrinkage; euro area; Horseshoe; inflation tail risks; MCMC; quantile regression; time-varying parameters;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CWA-2021-10-18 (Central and Western Asia)
- NEP-ECM-2021-10-18 (Econometrics)
- NEP-EEC-2021-10-18 (European Economics)
- NEP-ETS-2021-10-18 (Econometric Time Series)
- NEP-FOR-2021-10-18 (Forecasting)
- NEP-MAC-2021-10-18 (Macroeconomics)
- NEP-MON-2021-10-18 (Monetary Economics)
- NEP-ORE-2021-10-18 (Operations Research)
- NEP-RMG-2021-10-18 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20212600. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.