IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007999.html
   My bibliography  Save this article

Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts

Author

Listed:
  • Andrew F Magee
  • Sebastian Höhna
  • Tetyana I Vasylyeva
  • Adam D Leaché
  • Vladimir N Minin

Abstract

Birth-death processes have given biologists a model-based framework to answer questions about changes in the birth and death rates of lineages in a phylogenetic tree. Therefore birth-death models are central to macroevolutionary as well as phylodynamic analyses. Early approaches to studying temporal variation in birth and death rates using birth-death models faced difficulties due to the restrictive choices of birth and death rate curves through time. Sufficiently flexible time-varying birth-death models are still lacking. We use a piecewise-constant birth-death model, combined with both Gaussian Markov random field (GMRF) and horseshoe Markov random field (HSMRF) prior distributions, to approximate arbitrary changes in birth rate through time. We implement these models in the widely used statistical phylogenetic software platform RevBayes, allowing us to jointly estimate birth-death process parameters, phylogeny, and nuisance parameters in a Bayesian framework. We test both GMRF-based and HSMRF-based models on a variety of simulated diversification scenarios, and then apply them to both a macroevolutionary and an epidemiological dataset. We find that both models are capable of inferring variable birth rates and correctly rejecting variable models in favor of effectively constant models. In general the HSMRF-based model has higher precision than its GMRF counterpart, with little to no loss of accuracy. Applied to a macroevolutionary dataset of the Australian gecko family Pygopodidae (where birth rates are interpretable as speciation rates), the GMRF-based model detects a slow decrease whereas the HSMRF-based model detects a rapid speciation-rate decrease in the last 12 million years. Applied to an infectious disease phylodynamic dataset of sequences from HIV subtype A in Russia and Ukraine (where birth rates are interpretable as the rate of accumulation of new infections), our models detect a strongly elevated rate of infection in the 1990s.Author summary: Both the growth of groups of species and the spread of infectious diseases through populations can be modeled as birth-death processes. Birth events correspond either to speciation or infection, and death events to extinction or becoming noninfectious. The rates of birth and death may vary over time, and by examining this variation researchers can pinpoint important events in the history of life on Earth or in the course of an outbreak. Time-calibrated phylogenies track the relationships between a set of species (or infections) and the times of all speciation (or infection) events, and can thus be used to infer birth and death rates. We develop two phylogenetic birth-death models with the goal of discerning signal of rate variation from noise due to the stochastic nature of birth-death models. Using a variety of simulated datasets, we show that one of these models can accurately infer slow and rapid rate shifts without sacrificing precision. Using real data, we demonstrate that our new methodology can be used for simultaneous inference of phylogeny and rates through time.

Suggested Citation

  • Andrew F Magee & Sebastian Höhna & Tetyana I Vasylyeva & Adam D Leaché & Vladimir N Minin, 2020. "Locally adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
  • Handle: RePEc:plo:pcbi00:1007999
    DOI: 10.1371/journal.pcbi.1007999
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007999
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007999&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Alexandra Gavryushkina & David Welch & Tanja Stadler & Alexei J Drummond, 2014. "Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    3. Alexei J Drummond & Simon Y W Ho & Matthew J Phillips & Andrew Rambaut, 2006. "Relaxed Phylogenetics and Dating with Confidence," PLOS Biology, Public Library of Science, vol. 4(5), pages 1-1, March.
    4. Stilianos Louca & Matthew W. Pennell, 2020. "Extant timetrees are consistent with a myriad of diversification histories," Nature, Nature, vol. 580(7804), pages 502-505, April.
    5. W. Jetz & G. H. Thomas & J. B. Joy & K. Hartmann & A. O. Mooers, 2012. "The global diversity of birds in space and time," Nature, Nature, vol. 491(7424), pages 444-448, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah T. Friedman & Martha M. Muñoz, 2023. "A latitudinal gradient of deep-sea invasions for marine fishes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jamie B. Thompson & Tania Hernández-Hernández & Georgia Keeling & Marilyn Vásquez-Cruz & Nicholas K. Priest, 2024. "Identifying the multiple drivers of cactus diversification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Dimitar Dimitrov & Xiaoting Xu & Xiangyan Su & Nawal Shrestha & Yunpeng Liu & Jonathan D. Kennedy & Lisha Lyu & David Nogués-Bravo & James Rosindell & Yong Yang & Jon Fjeldså & Jianquan Liu & Bernhard, 2023. "Diversification of flowering plants in space and time," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Joan Garcia-Porta & Daniel Sol & Matt Pennell & Ferran Sayol & Antigoni Kaliontzopoulou & Carlos A. Botero, 2022. "Niche expansion and adaptive divergence in the global radiation of crows and ravens," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    6. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    7. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    8. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    9. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    10. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    11. Joachim Schmidt & Lars Opgenoorth & Steffen Höll & Ralf Bastrop, 2012. "Into the Himalayan Exile: The Phylogeography of the Ground Beetle Ethira clade Supports the Tibetan Origin of Forest-Dwelling Himalayan Species Groups," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    12. Yi Nengjun & Ma Shuangge, 2012. "Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-25, November.
    13. Ryan Martin & Bo Ning, 2020. "Empirical Priors and Coverage of Posterior Credible Sets in a Sparse Normal Mean Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 477-498, August.
    14. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    15. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    16. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
    17. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    18. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    19. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    20. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.