IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1556-1567.html
   My bibliography  Save this article

A Bayesian Dirichlet auto-regressive moving average model for forecasting lead times

Author

Listed:
  • Katz, Harrison
  • Brusch, Kai Thomas
  • Weiss, Robert E.

Abstract

In the hospitality industry, lead time data are a form of compositional data that are crucial for business planning, resource allocation, and staffing. Hospitality businesses accrue fees daily, but recognition of these fees is often deferred. This paper presents a novel class of Bayesian time series models, the Bayesian Dirichlet auto-regressive moving average (B-DARMA) model, designed specifically for compositional time series. The model is motivated by the analysis of five years of daily fees data from Airbnb, with the aim of forecasting the proportion of future fees that will be recognized in 12 consecutive monthly intervals. Each day’s compositional data are modeled as Dirichlet distributed, given the mean and a scale parameter. The mean is modeled using a vector auto-regressive moving average process, which depends on previous compositional data, previous compositional parameters, and daily covariates. The B-DARMA model provides a robust solution for analyzing large compositional vectors and time series of varying lengths. It offers efficiency gains through the choice of priors, yields interpretable parameters for inference, and produces reasonable forecasts. The paper also explores the use of normal and horseshoe priors for the vector auto-regressive and vector moving average coefficients, and for regression coefficients. The efficacy of the B-DARMA model is demonstrated through simulation studies and an analysis of Airbnb data.

Suggested Citation

  • Katz, Harrison & Brusch, Kai Thomas & Weiss, Robert E., 2024. "A Bayesian Dirichlet auto-regressive moving average model for forecasting lead times," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1556-1567.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1556-1567
    DOI: 10.1016/j.ijforecast.2024.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    3. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    4. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    5. Harald Uhlig, 1997. "Bayesian Vector Autoregressions with Stochastic Volatility," Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
    6. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    7. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    8. Anne B. Koehler & Ralph D. Snyder & J. Keith Ord & Adrian Beaumont, 2010. "Forecasting Compositional Time Series with Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 20/10, Monash University, Department of Econometrics and Business Statistics.
    9. Florian Huber & Martin Feldkircher, 2019. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
    10. Petra Kynčlová & Peter Filzmoser & Karel Hron, 2015. "Modeling Compositional Time Series with Vector Autoregressive Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 303-314, July.
    11. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    12. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.
    13. da-Silva, C.Q. & Migon, H.S. & Correia, L.T., 2011. "Dynamic Bayesian beta models," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2074-2089, June.
    14. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    15. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    16. Lindsay R. Berry & Mike West, 2020. "Bayesian Forecasting of Many Count-Valued Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 872-887, October.
    17. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    18. Terence Mills, 2010. "Forecasting compositional time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(4), pages 673-690, June.
    19. Brandt, Patrick T. & Sandler, Todd, 2012. "A Bayesian Poisson Vector Autoregression Model," Political Analysis, Cambridge University Press, vol. 20(3), pages 292-315, July.
    20. Spencer, David E., 1993. "Developing a Bayesian vector autoregression forecasting model," International Journal of Forecasting, Elsevier, vol. 9(3), pages 407-421, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harrison Katz & Erica Savage & Peter Coles, 2025. "Lead Times in Flux: Analyzing Airbnb Booking Dynamics During Global Upheavals (2018-2022)," Papers 2501.10535, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    2. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    3. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    4. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    5. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    6. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    7. Follett, Lendie & Yu, Cindy, 2019. "Achieving parsimony in Bayesian vector autoregressions with the horseshoe prior," Econometrics and Statistics, Elsevier, vol. 11(C), pages 130-144.
    8. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    9. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    10. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    11. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    12. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2023. "Modelling Okun’s law: Does non-Gaussianity matter?," Empirical Economics, Springer, vol. 64(5), pages 2183-2213, May.
    13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    14. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    15. Florian Huber & Gary Koop & Massimiliano Marcellino & Tobias Scheckel, 2024. "Bayesian modelling of VAR precision matrices using stochastic block networks," Papers 2407.16349, arXiv.org.
    16. Anastasios Evgenidis & Apostolos Fasianos, 2019. "Monetary Policy and Wealth Inequalities in Great Britain: Assessing the role of unconventional policies for a decade of household data," Papers 1912.09702, arXiv.org.
    17. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    18. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    19. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    20. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
    21. Dimitrios P. Louzis, 2017. "Macroeconomic and credit forecasts during the Greek crisis using Bayesian VARs," Empirical Economics, Springer, vol. 53(2), pages 569-598, September.
    22. Karamanis, Dimitrios & Kechrinioti, Alexandra, 2023. "The Greek-Turkish rivalry: A Bayesian VAR approach," MPRA Paper 116827, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1556-1567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.