Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ramírez-Hassan, Andrés & Carvajal-Rendón, Daniela A., 2021. "Specification uncertainty in modeling internet adoption: A developing city case analysis," Utilities Policy, Elsevier, vol. 70(C).
- Todd J. Levy & Kevin Coppa & Jinxuan Cang & Douglas P. Barnaby & Marc D. Paradis & Stuart L. Cohen & Alex Makhnevich & David Klaveren & David M. Kent & Karina W. Davidson & Jamie S. Hirsch & Theodoros, 2022. "Development and validation of self-monitoring auto-updating prognostic models of survival for hospitalized COVID-19 patients," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Gary Koop & Lise Tole, 2013.
"Forecasting the European carbon market,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
- Koop, Gary & Tole, Lise, 2011. "Forecasting the European Carbon Market," SIRE Discussion Papers 2011-20, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Lise Tole, 2011. "Forecasting the European Carbon Market," Working Papers 1110, University of Strathclyde Business School, Department of Economics.
- Miguel Belmonte & Gary Koop, 2014.
"Model Switching and Model Averaging in Time-Varying Parameter Regression Models,"
Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 45-69,
Emerald Group Publishing Limited.
- Miguel, Belmonte & Gary, Koop, 2013. "Model Switching and Model Averaging in Time- Varying Parameter Regression Models," SIRE Discussion Papers 2013-34, Scottish Institute for Research in Economics (SIRE).
- Miguel Belmonte & Gary Koop, 2013. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Working Papers 1302, University of Strathclyde Business School, Department of Economics.
- Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
- Bork, Lasse & Møller, Stig V., 2015. "Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection," International Journal of Forecasting, Elsevier, vol. 31(1), pages 63-78.
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2020.
"A New Index of Housing Sentiment,"
Management Science, INFORMS, vol. 66(4), pages 1563-1583, April.
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2016. "A New Index of Housing Sentiment," CREATES Research Papers 2016-32, Department of Economics and Business Economics, Aarhus University.
- Alisa Yusupova & Nicos G. Pavlidis & Efthymios G. Pavlidis, 2019. "Adaptive Dynamic Model Averaging with an Application to House Price Forecasting," Papers 1912.04661, arXiv.org.
- Hwang, Youngjin, 2019. "Forecasting recessions with time-varying models," Journal of Macroeconomics, Elsevier, vol. 62(C).
- Andrés Ramírez-Hassan, 2020. "Dynamic variable selection in dynamic logistic regression: an application to Internet subscription," Empirical Economics, Springer, vol. 59(2), pages 909-932, August.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Jiakun Jiang & Wei Yang & Erin M. Schnellinger & Stephen E. Kimmel & Wensheng Guo, 2023. "Dynamic logistic state space prediction model for clinical decision making," Biometrics, The International Biometric Society, vol. 79(1), pages 73-85, March.
- Solomon Shiferaw Beyene & Tianyi Ling & Blagoj Ristevski & Ming Chen, 2020. "A novel riboswitch classification based on imbalanced sequences achieved by machine learning," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-23, July.
- Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
- Hanan Naser & Fatema Alaali, 2018. "Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach," Empirical Economics, Springer, vol. 55(4), pages 1757-1777, December.
- Bakerman, Jordan & Pazdernik, Karl & Korkmaz, Gizem & Wilson, Alyson G., 2022. "Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest," International Journal of Forecasting, Elsevier, vol. 38(2), pages 648-661.
- Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Mélanie Roschewitz & Galvin Khara & Joe Yearsley & Nisha Sharma & Jonathan J. James & Éva Ambrózay & Adam Heroux & Peter Kecskemethy & Tobias Rijken & Ben Glocker, 2023. "Automatic correction of performance drift under acquisition shift in medical image classification," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ley, Eduardo & Steel, Mark F.J., 2012.
"Mixtures of g-priors for Bayesian model averaging with economic applications,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
- Ley, Eduardo & Steel, Mark F. J., 2010. "Mixtures of g-priors for Bayesian model averaging with economic applications," MPRA Paper 26941, University Library of Munich, Germany.
- Ley, Eduardo & Steel, Mark F.J., 2011. "Mixtures of g-priors for bayesian model averaging with economic applications," DES - Working Papers. Statistics and Econometrics. WS ws112116, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ley, Eduardo & Steel, Mark F. J., 2011. "Mixtures of g-priors for Bayesian model averaging with economic applications," MPRA Paper 36817, University Library of Munich, Germany.
- Ley, Eduardo & Steel, Mark F.J., 2011. "Mixtures of g-priors for Bayesian Model Averaging with economic application," Policy Research Working Paper Series 5732, The World Bank.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- David Kohns & Arnab Bhattacharjee, 2020.
"Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model,"
Papers
2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Macroeconomic forecasting in a multi‐country context,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
- Bai, Yu & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Macroeconomic Forecasting in a Multi-country Context," CEPR Discussion Papers 16994, C.E.P.R. Discussion Papers.
- Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic Forecasting in a Multi-country Context," Working Papers 22-02, Federal Reserve Bank of Cleveland.
- Niko Hauzenberger & Michael Pfarrhofer & Luca Rossini, 2020. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," Papers 2011.04577, arXiv.org, revised Apr 2023.
- Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
- Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Prüser, Jan & Blagov, Boris, 2022. "Improving inference and forecasting in VAR models using cross-sectional information," Ruhr Economic Papers 960, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Sylvia Fruhwirth-Schnatter & Peter Knaus, 2022. "Sparse Bayesian State-Space and Time-Varying Parameter Models," Papers 2207.12147, arXiv.org.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
- Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
- Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:1:p:23-30. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.