IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i512p1562-1576.html
   My bibliography  Save this article

Bayesian Factorizations of Big Sparse Tensors

Author

Listed:
  • Jing Zhou
  • Anirban Bhattacharya
  • Amy H. Herring
  • David B. Dunson

Abstract

It has become routine to collect data that are structured as multiway arrays (tensors). There is an enormous literature on low rank and sparse matrix factorizations, but limited consideration of extensions to the tensor case in statistics. The most common low rank tensor factorization relies on parallel factor analysis (PARAFAC), which expresses a rank k tensor as a sum of rank one tensors. In contingency table applications in which the sample size is massively less than the number of cells in the table, the low rank assumption is not sufficient and PARAFAC has poor performance. We induce an additional layer of dimension reduction by allowing the effective rank to vary across dimensions of the table. Taking a Bayesian approach, we place priors on terms in the factorization and develop an efficient Gibbs sampler for posterior computation. Theory is provided showing posterior concentration rates in high-dimensional settings, and the methods are shown to have excellent performance in simulations and several real data applications.

Suggested Citation

  • Jing Zhou & Anirban Bhattacharya & Amy H. Herring & David B. Dunson, 2015. "Bayesian Factorizations of Big Sparse Tensors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1562-1576, December.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1562-1576
    DOI: 10.1080/01621459.2014.983233
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.983233
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.983233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    3. Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
    4. Ghosal, Subhashis, 2000. "Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 49-68, July.
    5. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    6. A. Armagan & D. B. Dunson & J. Lee & W. U. Bajwa & N. Strawn, 2013. "Posterior consistency in linear models under shrinkage priors," Biometrika, Biometrika Trust, vol. 100(4), pages 1011-1018.
    7. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
    8. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    9. Weining Shen & Surya T. Tokdar & Subhashis Ghosal, 2013. "Adaptive Bayesian multivariate density estimation with Dirichlet mixtures," Biometrika, Biometrika Trust, vol. 100(3), pages 623-640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia D'Angelo & Marco Alfò & Thomas Brendan Murphy, 2020. "Modeling node heterogeneity in latent space models for multidimensional networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 324-341, August.
    2. Russo, Massimiliano & Durante, Daniele & Scarpa, Bruno, 2018. "Bayesian inference on group differences in multivariate categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 136-149.
    3. Guhaniyogi, Rajarshi, 2017. "Convergence rate of Bayesian supervised tensor modeling with multiway shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 157-168.
    4. Monica Billio & Roberto Casarin & Matteo Iacopini & Sylvia Kaufmann, 2023. "Bayesian Dynamic Tensor Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 429-439, April.
    5. Yang Qi, 2018. "A Very Brief Introduction to Nonnegative Tensors from the Geometric Viewpoint," Mathematics, MDPI, vol. 6(11), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    2. Daniele Durante & David B. Dunson & Joshua T. Vogelstein, 2017. "Nonparametric Bayes Modeling of Populations of Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1516-1530, October.
    3. Chuan Gao & Ian C McDowell & Shiwen Zhao & Christopher D Brown & Barbara E Engelhardt, 2016. "Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-39, July.
    4. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    5. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    6. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    7. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    8. Li, Hanning & Pati, Debdeep, 2017. "Variable selection using shrinkage priors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 107-119.
    9. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    10. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    11. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    12. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    13. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    14. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    15. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    16. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    17. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    18. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    19. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    20. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1562-1576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.