IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v16y2024i2d10.1007_s12561-023-09415-4.html
   My bibliography  Save this article

A Comparison of Statistical Methods for Studying Interactions of Chemical Mixtures

Author

Listed:
  • Debamita Kundu

    (University of Virginia)

  • Sungduk Kim

    (National Cancer Institute)

  • Mary H. Ward

    (National Cancer Institute)

  • Paul S. Albert

    (National Cancer Institute)

Abstract

Properly assessing the effects of environmental chemical exposures on disease risk remains a challenging problem in environmental epidemiology. Various analytic approaches have been proposed, but there are few papers that have compared the performance of different statistical methods on a single dataset. In this paper, we compare different regression-based approaches for estimating interactions between chemical mixture components using data from a case–control study on non-Hodgkin’s lymphoma. An analytic challenge is the high percentage of exposures that are below the limit of detection (LOD). Using imputation for LOD, we compare different Bayesian shrinkage prior approaches including an approach that incorporates the hierarchical principle where interactions are only included when main effects exist. Further, we develop an approach where main and interactive effects are represented by a series of distinct latent functions. We also fit the Bayesian kernel machine regression to these data. All of these approaches show little evidence of an interaction among the chemical mixtures when measurements below the LOD were imputed. The imputation approach makes very strong assumptions about the relationship between exposure and disease risk for measurements below the LOD. As an alternative, we show the results of an analysis where we model the exposure relationship with two parameters per mixture component; one characterizing the effect of being below the LOD and the other being a linear effect above the LOD. In this later analysis, we identify numerous strong interactions that were not identified in the analyses with imputation. This case study demonstrated the importance of developing new approaches for mixtures when the proportions of exposure measurements below the LOD are high.

Suggested Citation

  • Debamita Kundu & Sungduk Kim & Mary H. Ward & Paul S. Albert, 2024. "A Comparison of Statistical Methods for Studying Interactions of Chemical Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 503-519, July.
  • Handle: RePEc:spr:stabio:v:16:y:2024:i:2:d:10.1007_s12561-023-09415-4
    DOI: 10.1007/s12561-023-09415-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-023-09415-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-023-09415-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Beom Seuk Hwang & Zhen Chen & Germaine M. Buck Louis & Paul S. Albert, 2019. "A Bayesian multi‐dimensional couple‐based latent risk model with an application to infertility," Biometrics, The International Biometric Society, vol. 75(1), pages 315-325, March.
    3. David C. Wheeler & Salem Rustom & Matthew Carli & Todd P. Whitehead & Mary H. Ward & Catherine Metayer, 2021. "Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shelley H. Liu & Yitong Chen & Jordan R. Kuiper & Emily Ho & Jessie P. Buckley & Leah Feuerstahler, 2024. "Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 482-502, July.
    2. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    3. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    4. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    5. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    6. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    7. Matthew Carli & Mary H. Ward & Catherine Metayer & David C. Wheeler, 2022. "Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    8. Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
    9. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    10. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    11. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    12. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    13. Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
    14. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    15. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Oct 2024.
    16. Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.
    17. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    18. Yi Nengjun & Ma Shuangge, 2012. "Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-25, November.
    19. You Wu & Jeremy Gaskins & Maiying Kong & Susmita Datta, 2018. "Profiling the effects of short time†course cold ischemia on tumor protein phosphorylation using a Bayesian approach," Biometrics, The International Biometric Society, vol. 74(1), pages 331-341, March.
    20. Ryan Martin & Bo Ning, 2020. "Empirical Priors and Coverage of Posterior Credible Sets in a Sparse Normal Mean Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 477-498, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:16:y:2024:i:2:d:10.1007_s12561-023-09415-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.