IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v82y2020i2d10.1007_s13171-019-00177-0.html
   My bibliography  Save this article

Bayesian Fusion Estimation via t Shrinkage

Author

Listed:
  • Qifan Song

    (Purdue University)

  • Guang Cheng

    (Purdue University)

Abstract

Shrinkage prior has gained great successes in many data analysis, however, its applications mostly focus on the Bayesian modeling of sparse parameters. In this work, we will apply Bayesian shrinkage to model high dimensional parameter that possesses an unknown blocking structure. We propose to impose heavy-tail shrinkage prior, e.g., t prior, on the differences of successive parameter entries, and such a fusion prior will shrink successive differences towards zero and hence induce posterior blocking. Comparing to conventional Bayesian fused LASSO which implements Laplace fusion prior, t fusion prior induces stronger shrinkage effect and enjoys a nice posterior consistency property. Simulation studies and real data analyses show that t fusion has superior performance to the frequentist fusion estimator and Bayesian Laplace fusion prior. This t fusion strategy is further developed to conduct a Bayesian clustering analysis, and our simulations show that the proposed algorithm compares favorably to classical Dirichlet process modeling.

Suggested Citation

  • Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
  • Handle: RePEc:spr:sankha:v:82:y:2020:i:2:d:10.1007_s13171-019-00177-0
    DOI: 10.1007/s13171-019-00177-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-019-00177-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-019-00177-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    3. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    4. Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
    5. Faming Liang & Qifan Song & Kai Yu, 2013. "Bayesian Subset Modeling for High-Dimensional Generalized Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 589-606, June.
    6. P. Richard Hahn & Carlos M. Carvalho, 2015. "Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 435-448, March.
    7. J. P. Royston, 1982. "Expected Normal Order Statistics (Exact and Approximate)," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 161-165, June.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    9. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    10. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    11. Li, Hanning & Pati, Debdeep, 2017. "Variable selection using shrinkage priors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 107-119.
    12. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    13. Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. Hensher, David A., 2021. "The case for negotiated contracts under the transition to a green bus fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 255-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueying Tang & Xiaofan Xu & Malay Ghosh & Prasenjit Ghosh, 2018. "Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 215-246, August.
    2. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    3. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    4. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    6. Qifan Song & Faming Liang, 2015. "High-Dimensional Variable Selection With Reciprocal L 1 -Regularization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1607-1620, December.
    7. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    8. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
    9. Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    10. Li, Hanning & Pati, Debdeep, 2017. "Variable selection using shrinkage priors," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 107-119.
    11. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Bayesian model selection for generalized linear models using non-local priors," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 285-296.
    12. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    13. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    14. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    15. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    16. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    17. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    18. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
    19. Tathagata Basu & Matthias C. M. Troffaes & Jochen Einbeck, 2023. "A Robust Bayesian Analysis of Variable Selection under Prior Ignorance," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1014-1057, February.
    20. Hamed Haselimashhadi & Veronica Vinciotti, 2018. "Penalised inference for lagged dependent regression in the presence of autocorrelated residuals," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 49-68, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:82:y:2020:i:2:d:10.1007_s13171-019-00177-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.