IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i5p1391-1412.html
   My bibliography  Save this article

Bayesian sparse mediation analysis with targeted penalization of natural indirect effects

Author

Listed:
  • Yanyi Song
  • Xiang Zhou
  • Jian Kang
  • Max T. Aung
  • Min Zhang
  • Wei Zhao
  • Belinda L. Needham
  • Sharon L. R. Kardia
  • Yongmei Liu
  • John D. Meeker
  • Jennifer A. Smith
  • Bhramar Mukherjee

Abstract

Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high‐dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high‐dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure‐mediator effect and mediator‐outcome effect with either (a) a four‐component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modelling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four‐component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in‐depth analysis of two ongoing epidemiologic studies: the Multi‐Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms.

Suggested Citation

  • Yanyi Song & Xiang Zhou & Jian Kang & Max T. Aung & Min Zhang & Wei Zhao & Belinda L. Needham & Sharon L. R. Kardia & Yongmei Liu & John D. Meeker & Jennifer A. Smith & Bhramar Mukherjee, 2021. "Bayesian sparse mediation analysis with targeted penalization of natural indirect effects," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1391-1412, November.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1391-1412
    DOI: 10.1111/rssc.12518
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12518
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    2. Yanyi Song & Xiang Zhou & Min Zhang & Wei Zhao & Yongmei Liu & Sharon L. R. Kardia & Ana V. Diez Roux & Belinda L. Needham & Jennifer A. Smith & Bhramar Mukherjee, 2020. "Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies," Biometrics, The International Biometric Society, vol. 76(3), pages 700-710, September.
    3. Max T. Aung & Yanyi Song & Kelly K. Ferguson & David E. Cantonwine & Lixia Zeng & Thomas F. McElrath & Subramaniam Pennathur & John D. Meeker & Bhramar Mukherjee, 2020. "Application of an analytical framework for multivariate mediation analysis of environmental data," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    5. Yen-Tsung Huang & Wen-Chi Pan, 2016. "Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators," Biometrics, The International Biometric Society, vol. 72(2), pages 402-413, June.
    6. Yang Ni & Francesco C. Stingo & Veerabhadran Baladandayuthapani, 2019. "Bayesian Graphical Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 184-197, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caubet, Miguel & Samoilenko, Mariia & Drouin, Simon & Sinnett, Daniel & Krajinovic, Maja & Laverdière, Caroline & Marcil, Valérie & Lefebvre, Geneviève, 2023. "Bayesian joint modeling for causal mediation analysis with a binary outcome and a binary mediator: Exploring the role of obesity in the association between cranial radiation therapy for childhood acut," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    2. Lulu Shang & Wei Zhao & Yi Zhe Wang & Zheng Li & Jerome J. Choi & Minjung Kho & Thomas H. Mosley & Sharon L. R. Kardia & Jennifer A. Smith & Xiang Zhou, 2023. "meQTL mapping in the GENOA study reveals genetic determinants of DNA methylation in African Americans," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Bo Wang & Cuilin Zhang & Zhen Chen, 2021. "Intergenerational Associations Between Maternal Diet and Childhood Adiposity: A Bayesian Regularized Mediation Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 524-542, December.
    2. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
    3. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    4. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    5. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    6. Bhattacharya, Anirban & Dunson, David B. & Pati, Debdeep & Pillai, Natesh S., 2016. "Sub-optimality of some continuous shrinkage priors," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3828-3842.
    7. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    8. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    9. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    10. Hauzenberger Niko & Huber Florian & Koop Gary, 2024. "Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
    11. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    12. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
    13. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    14. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    15. Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.
    16. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    17. Qifan Song & Guang Cheng, 2020. "Bayesian Fusion Estimation via t Shrinkage," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-385, August.
    18. Rachael Meager, 2015. "Understanding the Impact of Microcredit Expansions: A Bayesian Hierarchical Analysis of 7 Randomised Experiments," Papers 1506.06669, arXiv.org, revised Jul 2016.
    19. Andrew J. Womack & Luis León-Novelo & George Casella, 2014. "Inference From Intrinsic Bayes' Procedures Under Model Selection and Uncertainty," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1040-1053, September.
    20. Boonstra, Philip S. & Barbaro, Ryan P. & Sen, Ananda, 2019. "Default priors for the intercept parameter in logistic regressions," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 245-256.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1391-1412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.