IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/fah3z.html
   My bibliography  Save this paper

Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors

Author

Listed:
  • Donegan, Connor
  • Chun, Yongwan
  • Hughes, Amy E.

Abstract

This paper proposes a Bayesian method for spatial regression using eigenvector spatial filtering (ESF) and Piironen and Vehtari's (2017) regularized horseshoe (RHS) prior. ESF models are most often estimated using variable selection procedures such as stepwise selection, but in the absence of a Bayesian model averaging procedure variable selection methods cannot properly account for parameter uncertainty. Hierarchical shrinkage priors such as the RHS address the foregoing concern in a computationally efficient manner by encoding prior information about spatial filters into an adaptive prior distribution which shrinks posterior estimates towards zero in the absence of a strong signal while only minimally regularizing coefficients of important eigenvectors. This paper presents results from a large simulation study which compares the performance of the proposed Bayesian model (RHS-ESF) to alternative spatial models under a variety of spatial autocorrelation scenarios. The RHS-ESF model performance matched that of the SAR model from which the data was generated. The study highlights that reliable uncertainty estimates require greater attention to spatial autocorrelation in covariates than is typically given. A demonstration analysis of 2016 U.S. Presidential election results further evidences robustness of results to hyper-prior specifications as well as the advantages of estimating spatial models using the Stan probabilistic programming language.

Suggested Citation

  • Donegan, Connor & Chun, Yongwan & Hughes, Amy E., 2020. "Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors," OSF Preprints fah3z, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:fah3z
    DOI: 10.31219/osf.io/fah3z
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e2332a0edceab00fa832b03/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/fah3z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    3. Brian J. Reich & James S. Hodges & Vesna Zadnik, 2006. "Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1197-1206, December.
    4. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    5. Manfred M. Fischer & Peter Nijkamp (ed.), 2014. "Handbook of Regional Science," Springer Books, Springer, edition 127, number 978-3-642-23430-9, February.
    6. Daniel A. Griffith, 2000. "A linear regression solution to the spatial autocorrelation problem," Journal of Geographical Systems, Springer, vol. 2(2), pages 141-156, July.
    7. Yongwan Chun & Daniel A. Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    8. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    9. R. Kelley Pace & James P. Lesage & Shuang Zhu, 2013. "Interpretation and Computation of Estimates from Regression Models using Spatial Filtering," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 352-369, September.
    10. John Hughes & Murali Haran, 2013. "Dimension reduction and alleviation of confounding for spatial generalized linear mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 139-159, January.
    11. Michael Tiefelsdorf & Daniel A Griffith, 2007. "Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach," Environment and Planning A, , vol. 39(5), pages 1193-1221, May.
    12. Yongwan Chun & Daniel Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    13. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Connor Donegan & Yongwan Chun & Daniel A. Griffith, 2021. "Modeling Community Health with Areal Data: Bayesian Inference with Survey Standard Errors and Spatial Structure," IJERPH, MDPI, vol. 18(13), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    2. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    3. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    4. Yongwan Chun & Daniel A. Griffith & Monghyeon Lee & Parmanand Sinha, 2016. "Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters," Journal of Geographical Systems, Springer, vol. 18(1), pages 67-85, January.
    5. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    6. Daniel A. Griffith, 2019. "Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics," Stats, MDPI, vol. 2(3), pages 1-28, August.
    7. Trevor J. Hefley & Mevin B. Hooten & Ephraim M. Hanks & Robin E. Russell & Daniel P. Walsh, 2017. "The Bayesian Group Lasso for Confounded Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 42-59, March.
    8. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    9. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    10. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    11. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    12. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    13. Emiko Dupont & Nicole H. Augustin, 2024. "Spatial Confounding and Spatial+ for Nonlinear Covariate Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 455-470, September.
    14. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    15. Widemberg S. Nobre & Alexandra M. Schmidt & João B. M. Pereira, 2021. "On the Effects of Spatial Confounding in Hierarchical Models," International Statistical Review, International Statistical Institute, vol. 89(2), pages 302-322, August.
    16. Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
    17. Karim Anaya‐Izquierdo & Neal Alexander, 2021. "Spatial regression and spillover effects in cluster randomized trials with count outcomes," Biometrics, The International Biometric Society, vol. 77(2), pages 490-505, June.
    18. Christoph Hammer & Aurélien Fichet de Clairfontaine, 2016. "Trade Costs and Income in European Regions," Department of Economics Working Papers wuwp220, Vienna University of Economics and Business, Department of Economics.
    19. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    20. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:fah3z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.