IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55287-7.html
   My bibliography  Save this article

A Bayesian active learning platform for scalable combination drug screens

Author

Listed:
  • Christopher Tosh

    (Memorial Sloan Kettering Cancer Center)

  • Mauricio Tec

    (Harvard T.H. Chan School of Public Health)

  • Jessica B. White

    (Memorial Sloan Kettering Cancer Center)

  • Jeffrey F. Quinn

    (Memorial Sloan Kettering Cancer Center)

  • Glorymar Ibanez Sanchez

    (Memorial Sloan Kettering Cancer Center)

  • Paul Calder

    (Memorial Sloan Kettering Cancer Center)

  • Andrew L. Kung

    (Memorial Sloan Kettering Cancer Center)

  • Filemon S. Dela Cruz

    (Memorial Sloan Kettering Cancer Center)

  • Wesley Tansey

    (Memorial Sloan Kettering Cancer Center)

Abstract

Large-scale combination drug screens are generally considered intractable due to the immense number of possible combinations. Existing approaches use ad hoc fixed experimental designs then train machine learning models to impute unobserved combinations. Here we propose BATCHIE, an orthogonal approach that conducts experiments dynamically in batches. BATCHIE uses information theory and probabilistic modeling to design each batch to be maximally informative based on the results of previous experiments. On retrospective experiments from previous large-scale screens, BATCHIE designs rapidly discover highly effective and synergistic combinations. In a prospective combination screen of a library of 206 drugs on a collection of pediatric cancer cell lines, the BATCHIE model accurately predicts unseen combinations and detects synergies after exploring only 4% of the 1.4M possible experiments. Further, the model identifies a panel of top combinations for Ewing sarcomas, which follow-up validation experiments confirm to be effective, including the rational and translatable top hit of PARP plus topoisomerase I inhibition. These results demonstrate that adaptive experiments can enable large-scale unbiased combination drug screens with a relatively small number of experiments. BATCHIE is open source and publicly available ( https://github.com/tansey-lab/batchie ).

Suggested Citation

  • Christopher Tosh & Mauricio Tec & Jessica B. White & Jeffrey F. Quinn & Glorymar Ibanez Sanchez & Paul Calder & Andrew L. Kung & Filemon S. Dela Cruz & Wesley Tansey, 2025. "A Bayesian active learning platform for scalable combination drug screens," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55287-7
    DOI: 10.1038/s41467-024-55287-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55287-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55287-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    2. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    3. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    4. Mahmoud Ghandi & Franklin W. Huang & Judit Jané-Valbuena & Gregory V. Kryukov & Christopher C. Lo & E. Robert McDonald & Jordi Barretina & Ellen T. Gelfand & Craig M. Bielski & Haoxin Li & Kevin Hu & , 2019. "Next-generation characterization of the Cancer Cell Line Encyclopedia," Nature, Nature, vol. 569(7757), pages 503-508, May.
    5. Qiao Liu & Lei Xie, 2021. "TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-22, February.
    6. Heli Julkunen & Anna Cichonska & Prson Gautam & Sandor Szedmak & Jane Douat & Tapio Pahikkala & Tero Aittokallio & Juho Rousu, 2020. "Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    7. Sam Behjati & Patrick S. Tarpey & Kerstin Haase & Hongtao Ye & Matthew D. Young & Ludmil B. Alexandrov & Sarah J. Farndon & Grace Collord & David C. Wedge & Inigo Martincorena & Susanna L. Cooke & Hel, 2017. "Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    8. Patricia Jaaks & Elizabeth A. Coker & Daniel J. Vis & Olivia Edwards & Emma F. Carpenter & Simonetta M. Leto & Lisa Dwane & Francesco Sassi & Howard Lightfoot & Syd Barthorpe & Dieudonne Meer & Wanjua, 2022. "Effective drug combinations in breast, colon and pancreatic cancer cells," Nature, Nature, vol. 603(7899), pages 166-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Agnese Maria Di Brisco & Sonia Migliorati, 2021. "A spatial mixed-effects regression model for electoral data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 543-571, June.
    3. Matthias Schmid & Florian Wickler & Kelly O Maloney & Richard Mitchell & Nora Fenske & Andreas Mayr, 2013. "Boosted Beta Regression," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    4. Paulus, Anne & Hagemann, Nina & Baaken, Marieke C. & Roilo, Stephanie & Alarcón-Segura, Viviana & Cord, Anna F. & Beckmann, Michael, 2022. "Landscape context and farm characteristics are key to farmers' adoption of agri-environmental schemes," Land Use Policy, Elsevier, vol. 121(C).
    5. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    6. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    7. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    8. Yayan Hernuryadin & Koji Kotani & Tatsuyoshi Saijo, 2020. "Time Preferences of Food Producers: Does “Cultivate and Grow” Matter?," Land Economics, University of Wisconsin Press, vol. 96(1), pages 132-148.
    9. Mhamed Ben Salah & Cédric Chambru & Maleke Fourati, 2022. "The colonial legacy of education: evidence from of Tunisia," ECON - Working Papers 411, Department of Economics - University of Zurich, revised Sep 2024.
    10. Muhammad Suhail Rizwan & Asifa Obaid & Dawood Ashraf, 2017. "The Impact of Corporate Social Responsibility on Default Risk: Empirical evidence from US Firms," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 9(3), pages 36-70, September.
    11. Korkeamäki, Timo & Virk, Nader & Wang, Haizhi & Wang, Peng, 2018. "Learning Chinese? The changing investment behavior of foreign institutions in the Chinese stock market," BOFIT Discussion Papers 19/2018, Bank of Finland Institute for Emerging Economies (BOFIT).
    12. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    13. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    14. Takeshima, Hiroyuki & Liverpool-Tasie, Lenis Saweda O., 2015. "Fertilizer subsidies, political influence and local food prices in sub-Saharan Africa: Evidence from Nigeria," Food Policy, Elsevier, vol. 54(C), pages 11-24.
    15. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    16. Silvia Balia, 2007. "Reporting expected longevity and smoking: evidence from the SHARE," Health, Econometrics and Data Group (HEDG) Working Papers 07/10, HEDG, c/o Department of Economics, University of York.
    17. Maria V. Sokolova, 2016. "Trade Re(Im)Balanced: The Role of Regional Trade Agreements," IHEID Working Papers 06-2016, Economics Section, The Graduate Institute of International Studies.
    18. Sokolova, Maria V., 2016. "Exchange Rates, International Trade and Growth: Re-Evaluation of Undervaluation," Conference papers 332790, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    20. Baccini, Leonardo & Urpelainen, Johannes, 2012. "Legislative fractionalization and partisan shifts to the left increase the volatility of public energy R&D expenditures," LSE Research Online Documents on Economics 45571, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55287-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.