IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v173y2022ics0167947322000974.html
   My bibliography  Save this article

Log-regularly varying scale mixture of normals for robust regression

Author

Listed:
  • Hamura, Yasuyuki
  • Irie, Kaoru
  • Sugasawa, Shonosuke

Abstract

Linear regression that employs the assumption of normality for the error distribution may lead to an undesirable posterior inference of regression coefficients due to potential outliers. A finite mixture of two components, one with thin and one with heavy tails, is considered as the error distribution in this study. For the heavily-tailed component, the novel class of distributions is introduced; their densities are log-regularly varying and have heavier tails than the Cauchy distribution. Yet, they are expressed as a scale mixture of normals which enables the efficient posterior inference when using a Gibbs sampler. The robustness of the posterior distributions is proved under the proposed models using a minimal set of assumptions, which justifies the use of shrinkage priors with unbounded densities for the coefficient vector in the presence of outliers. An extensive comparison with the existing methods via simulation study shows the improved performance of the proposed model in point and interval estimation, as well as its computational efficiency. Further, the posterior robustness of the proposed method is confirmed in an empirical study with shrinkage priors for regression coefficients.

Suggested Citation

  • Hamura, Yasuyuki & Irie, Kaoru & Sugasawa, Shonosuke, 2022. "Log-regularly varying scale mixture of normals for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000974
    DOI: 10.1016/j.csda.2022.107517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000974
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Bovas Abraham & George E. P. Box, 1978. "Linear Models and Spurious Observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(2), pages 131-138, June.
    4. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    5. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    6. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    7. Jose Ailton Alencar Andrade & Anthony O'Hagan, 2011. "Bayesian Robustness Modelling of Location and Scale Parameters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 691-711, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gagnon, Philippe & Wang, Yuxi, 2024. "Robust heavy-tailed versions of generalized linear models with applications in actuarial science," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    2. Gagnon, Philippe & Hayashi, Yoshiko, 2023. "Theoretical properties of Bayesian Student-t linear regression," Statistics & Probability Letters, Elsevier, vol. 193(C).
    3. Hamura, Yasuyuki & Irie, Kaoru & Sugasawa, Shonosuke, 2024. "Posterior robustness with milder conditions: Contamination models revisited," Statistics & Probability Letters, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    2. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    3. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    4. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
    5. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    6. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    7. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    8. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    9. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    10. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
    11. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    12. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    13. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    14. Yu Bai & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Macroeconomic forecasting in a multi‐country context," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1230-1255, September.
    15. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Paper series 20-09, Rimini Centre for Economic Analysis.
    16. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    17. Yu Takagi & Hirokazu Matsuda & Yukio Taniguchi & Hiroaki Iwaisaki, 2014. "Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    18. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    19. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    20. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.