IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i3p677-690.html
   My bibliography  Save this article

Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories

Author

Listed:
  • James R. Faulkner
  • Andrew F. Magee
  • Beth Shapiro
  • Vladimir N. Minin

Abstract

Phylodynamics is an area of population genetics that uses genetic sequence data to estimate past population dynamics. Modern state‐of‐the‐art Bayesian nonparametric methods for recovering population size trajectories of unknown form use either change‐point models or Gaussian process priors. Change‐point models suffer from computational issues when the number of change‐points is unknown and needs to be estimated. Gaussian process‐based methods lack local adaptivity and cannot accurately recover trajectories that exhibit features such as abrupt changes in trend or varying levels of smoothness. We propose a novel, locally adaptive approach to Bayesian nonparametric phylodynamic inference that has the flexibility to accommodate a large class of functional behaviors. Local adaptivity results from modeling the log‐transformed effective population size a priori as a horseshoe Markov random field, a recently proposed statistical model that blends together the best properties of the change‐point and Gaussian process modeling paradigms. We use simulated data to assess model performance, and find that our proposed method results in reduced bias and increased precision when compared to contemporary methods. We also use our models to reconstruct past changes in genetic diversity of human hepatitis C virus in Egypt and to estimate population size changes of ancient and modern steppe bison. These analyses show that our new method captures features of the population size trajectories that were missed by the state‐of‐the‐art methods.

Suggested Citation

  • James R. Faulkner & Andrew F. Magee & Beth Shapiro & Vladimir N. Minin, 2020. "Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories," Biometrics, The International Biometric Society, vol. 76(3), pages 677-690, September.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:677-690
    DOI: 10.1111/biom.13276
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13276
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Montserrat Fuentes, 2002. "Spectral methods for nonstationary spatial processes," Biometrika, Biometrika Trust, vol. 89(1), pages 197-210, March.
    2. David A Rasmussen & Erik M Volz & Katia Koelle, 2014. "Phylodynamic Inference for Structured Epidemiological Models," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    3. Julia A. Palacios & Vladimir N. Minin, 2013. "Gaussian Process-Based Bayesian Nonparametric Inference of Population Size Trajectories from Gene Genealogies," Biometrics, The International Biometric Society, vol. 69(1), pages 8-18, March.
    4. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    5. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    6. Andrew Rambaut & Oliver G. Pybus & Martha I. Nelson & Cecile Viboud & Jeffery K. Taubenberger & Edward C. Holmes, 2008. "The genomic and epidemiological dynamics of human influenza A virus," Nature, Nature, vol. 453(7195), pages 615-619, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Cappello & Swarnadip Ghosh & Julia A. Palacios, 2020. "Discussion on “Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories” by James R. Faulkner, Andrew F. Magee, Beth Shapiro, and Vladimir N. Minin," Biometrics, The International Biometric Society, vol. 76(3), pages 691-694, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael D Karcher & Julia A Palacios & Trevor Bedford & Marc A Suchard & Vladimir N Minin, 2016. "Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-19, March.
    2. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    3. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
    4. Suvo Chatterjee & Shrabanti Chowdhury & Duchwan Ryu & Sanjib Basu, 2023. "Bayesian functional data analysis over dependent regions and its application for identification of differentially methylated regions," Biometrics, The International Biometric Society, vol. 79(4), pages 3294-3306, December.
    5. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    6. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    7. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    8. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    9. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    10. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    11. Yunxi Zhang & Soeun Kim, 2024. "Gaussian Graphical Model Estimation and Selection for High-Dimensional Incomplete Data Using Multiple Imputation and Horseshoe Estimators," Mathematics, MDPI, vol. 12(12), pages 1-15, June.
    12. Bhattacharya, Anirban & Dunson, David B. & Pati, Debdeep & Pillai, Natesh S., 2016. "Sub-optimality of some continuous shrinkage priors," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3828-3842.
    13. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    14. Yanyi Song & Xiang Zhou & Jian Kang & Max T. Aung & Min Zhang & Wei Zhao & Belinda L. Needham & Sharon L. R. Kardia & Yongmei Liu & John D. Meeker & Jennifer A. Smith & Bhramar Mukherjee, 2021. "Bayesian sparse mediation analysis with targeted penalization of natural indirect effects," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1391-1412, November.
    15. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    16. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
    17. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    18. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    19. Vijaykrishna Dhanasekaran & Sheena Sullivan & Kimberly M. Edwards & Ruopeng Xie & Arseniy Khvorov & Sophie A. Valkenburg & Benjamin J. Cowling & Ian G. Barr, 2022. "Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Kin Keung Lai & Ming Wang & Jiangze Du, 2019. "Modeling and Predicting Infectious Diseases Cases with Climatic Factors in Hong Kong," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 23(1), pages 17147-17150, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:677-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.