Anders Bredahl Kock
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Working papers
- Anders Bredahl Kock & David Preinerstorfer, 2021.
"Superconsistency of Tests in High Dimensions,"
Papers
2106.03700, arXiv.org, revised Jan 2022.
Cited by:
- Thilo Reinschlussel & Martin C. Arnold, 2024. "Information-Enriched Selection of Stationary and Non-Stationary Autoregressions using the Adaptive Lasso," Papers 2402.16580, arXiv.org, revised Jul 2024.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020.
"Treatment recommendation with distributional targets,"
Papers
2005.09717, arXiv.org, revised Apr 2022.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
Cited by:
- Claudio Cardoso Flores & Marcelo Cunha Medeiros, 2020. "Online Action Learning in High Dimensions: A Conservative Perspective," Papers 2009.13961, arXiv.org, revised Mar 2024.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020.
"Functional Sequential Treatment Allocation with Covariates,"
Papers
2001.10996, arXiv.org.
Cited by:
- Keisuke Hirano & Jack R. Porter, 2023. "Asymptotic Representations for Sequential Decisions, Adaptive Experiments, and Batched Bandits," Papers 2302.03117, arXiv.org.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2018.
"Functional Sequential Treatment Allocation,"
Papers
1812.09408, arXiv.org, revised Aug 2020.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
Cited by:
- Maximilian Kasy & Anja Sautmann, 2019.
"Adaptive Treatment Assignment in Experiments for Policy Choice,"
CESifo Working Paper Series
7778, CESifo.
- Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
- Keisuke Hirano & Jack R. Porter, 2023. "Asymptotic Representations for Sequential Decisions, Adaptive Experiments, and Batched Bandits," Papers 2302.03117, arXiv.org.
- Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Jeff Rowley, 2024. "Bandit algorithms for policy learning: methods, implementation, and welfare-performance," The Japanese Economic Review, Springer, vol. 75(3), pages 407-447, July.
- Claudio Cardoso Flores & Marcelo Cunha Medeiros, 2020. "Online Action Learning in High Dimensions: A Conservative Perspective," Papers 2009.13961, arXiv.org, revised Mar 2024.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Functional Sequential Treatment Allocation with Covariates," Papers 2001.10996, arXiv.org.
- Anders Bredahl Kock & Martin Thyrsgaard, 2017.
"Optimal sequential treatment allocation,"
Papers
1705.09952, arXiv.org, revised Aug 2018.
Cited by:
- Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
- Anders Bredahl Kock & David Preinerstorfer, 2017.
"Power in High-dimensional testing Problems,"
Working Papers ECARES
ECARES 2017-42, ULB -- Universite Libre de Bruxelles.
- Anders Bredahl Kock & David Preinerstorfer, 2019. "Power in High‐Dimensional Testing Problems," Econometrica, Econometric Society, vol. 87(3), pages 1055-1069, May.
Cited by:
- Anders Bredahl Kock & David Preinerstorfer, 2021. "Superconsistency of Tests in High Dimensions," Papers 2106.03700, arXiv.org, revised Jan 2022.
- Ge, S. & Li, S. & Linton, O., 2020. "A Dynamic Network of Arbitrage Characteristics," Cambridge Working Papers in Economics 2060, Faculty of Economics, University of Cambridge.
- Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
- David Preinerstorfer, 2018. "How to avoid the zero-power trap in testing for correlation," Papers 1812.10752, arXiv.org.
- He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
- Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
- Federico A. Bugni & Mehmet Caner & Anders Bredahl Kock & Soumendra Lahiri, 2016.
"Inference in partially identified models with many moment inequalities using Lasso,"
CREATES Research Papers
2016-12, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Andrew Chesher & Adam Rosen, 2019.
"Generalized Instrumental Variable Models, Methods, and Applications,"
CeMMAP working papers
CWP41/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Andrew Chesher & Adam Rosen, 2018. "Generalized instrumental variable models, methods, and applications," CeMMAP working papers CWP43/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Allen, Roy, 2018. "Testing moment inequalities: Selection versus recentering," Economics Letters, Elsevier, vol. 162(C), pages 124-126.
- Nick Koning & Paul Bekker, 2019. "Exact Testing of Many Moment Inequalities Against Multiple Violations," Papers 1904.12775, arXiv.org, revised Jun 2020.
- Andrew Chesher & Adam Rosen, 2019.
"Generalized Instrumental Variable Models, Methods, and Applications,"
CeMMAP working papers
CWP41/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2015.
"Sharp Threshold Detection Based on Sup-norm Error rates in High-dimensional Models,"
CREATES Research Papers
2015-10, Department of Economics and Business Economics, Aarhus University.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2017. "Sharp Threshold Detection Based on Sup-Norm Error Rates in High-Dimensional Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 250-264, April.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2015. "Sharp Threshold Detection based on Sup-Norm Error Rates in High-dimensional Models," Tinbergen Institute Discussion Papers 15-019/III, Tinbergen Institute.
Cited by:
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018.
"Oracle Estimation of a Change Point in High-Dimensional Quantile Regression,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1184-1194, July.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2016. "Oracle Estimation of a Change Point in High Dimensional Quantile Regression," Papers 1603.00235, arXiv.org, revised Dec 2016.
- Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
- Mehmet Caner & Anders Bredahl Kock, 2014.
"Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso,"
CREATES Research Papers
2014-36, Department of Economics and Business Economics, Aarhus University.
- Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
Cited by:
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"High-Dimensional Granger Causality Tests with an Application to VIX and News,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2019. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Papers 1912.06307, arXiv.org, revised Feb 2021.
- Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023.
"High-dimensional VARs with common factors,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
- Ke Miao & Peter C.B. Phillips & Liangjun Su, 2020. "High-Dimensional VARs with Common Factors," Cowles Foundation Discussion Papers 2252, Cowles Foundation for Research in Economics, Yale University.
- Peter C. B. Phillips & Zhentao Shi, 2021.
"Boosting: Why You Can Use The Hp Filter,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
- Peter C. B. Phillips & Zhentao Shi, 2019. "Boosting: Why You Can Use the HP Filter," Papers 1905.00175, arXiv.org, revised Nov 2020.
- Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting: Why you Can Use the HP Filter," Cowles Foundation Discussion Papers 2212, Cowles Foundation for Research in Economics, Yale University.
- Anders Bredahl Kock & Haihan Tang, 2014. "Inference in High-dimensional Dynamic Panel Data Models," CREATES Research Papers 2014-58, Department of Economics and Business Economics, Aarhus University.
- Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
- Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting the Hodrick-Prescott Filter," Cowles Foundation Discussion Papers 2192, Cowles Foundation for Research in Economics, Yale University.
- Ekaterina Seregina, 2020. "A Basket Half Full: Sparse Portfolios," Papers 2011.04278, arXiv.org, revised Apr 2021.
- Saulius Jokubaitis & Remigijus Leipus, 2022. "Asymptotic Normality in Linear Regression with Approximately Sparse Structure," Mathematics, MDPI, vol. 10(10), pages 1-28, May.
- Harold D. Chiang, 2019.
"Many Average Partial Effects: with an Application to Text Regression,"
2019 Papers
pch1836, Job Market Papers.
- Harold D. Chiang, 2018. "Many Average Partial Effects: with An Application to Text Regression," Papers 1812.09397, arXiv.org, revised Jan 2022.
- Caner, Mehmet, 2023.
"Generalized linear models with structured sparsity estimators,"
Journal of Econometrics, Elsevier, vol. 236(2).
- Mehmet Caner, 2021. "Generalized Linear Models with Structured Sparsity Estimators," Papers 2104.14371, arXiv.org.
- Honda, Toshio & 本田, 敏雄, 2019. "The de-biased group Lasso estimation for varying coefficient models," Discussion Papers 2018-04, Graduate School of Economics, Hitotsubashi University.
- Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
- Gold, David & Lederer, Johannes & Tao, Jing, 2020. "Inference for high-dimensional instrumental variables regression," Journal of Econometrics, Elsevier, vol. 217(1), pages 79-111.
- Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
- Mehmet Caner & Qingliang Fan & Yingying Li, 2024. "Navigating Complexity: Constrained Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints," Papers 2402.17523, arXiv.org.
- Carlos Lamarche & Thomas Parker, 2022.
"Wild Bootstrap Inference For Penalized Quantile Regression For Longitudinal Data,"
Working Papers
22003 Classification-C15,, University of Waterloo, Department of Economics.
- Carlos Lamarche & Thomas Parker, 2020. "Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data," Papers 2004.05127, arXiv.org, revised May 2022.
- Lamarche, Carlos & Parker, Thomas, 2023. "Wild bootstrap inference for penalized quantile regression for longitudinal data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
- Tom Boot & Didier Nibbering, 2017. "Inference in high-dimensional linear regression models," Tinbergen Institute Discussion Papers 17-032/III, Tinbergen Institute, revised 05 Jul 2017.
- Lorenza Rossi & Emilio Zanetti Chini, 2019.
"Temporal Disaggregation of Business Dynamics: New Evidence for U.S. Economy,"
Working Papers in Public Economics
188, Department of Economics and Law, Sapienza University of Roma.
- Rossi, Lorenza & Zanetti Chini, Emilio, 2021. "Temporal disaggregation of business dynamics: New evidence for U.S. economy," Journal of Macroeconomics, Elsevier, vol. 69(C).
- Mehmet Caner & Kfir Eliaz, 2021. "Shoiuld Humans Lie to Machines: The Incentive Compatibility of Lasso and General Weighted Lasso," Papers 2101.01144, arXiv.org, revised Sep 2021.
- Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022.
"The boosted HP filter is more general than you might think,"
Cowles Foundation Discussion Papers
2348, Cowles Foundation for Research in Economics, Yale University.
- Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2022. "The boosted HP filter is more general than you might think," Papers 2209.09810, arXiv.org, revised Apr 2024.
- Jiti Gao & Bin Peng & Yayi Yan, 2024. "Robust Inference for High-Dimensional Panel Data Models," Papers 2405.07420, arXiv.org, revised Aug 2024.
- Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
- Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023.
"Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
- Mehmet Caner & Marcelo Medeiros & Gabriel Vasconcelos, 2020. "Sharpe Ratio Analysis in High Dimensions: Residual-Based Nodewise Regression in Factor Models," Papers 2002.01800, arXiv.org, revised Feb 2022.
- Mehmet Caner & Xu Han, 2021.
"An upper bound for functions of estimators in high dimensions,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 1-13, January.
- Mehmet Caner & Xu Han, 2020. "An Upper Bound for Functions of Estimators in High Dimensions," Papers 2008.02636, arXiv.org.
- Geonwoo Kim & Suyong Song, 2024. "Double/Debiased CoCoLASSO of Treatment Effects with Mismeasured High-Dimensional Control Variables," Papers 2408.14671, arXiv.org.
- Chiang, Harold D. & Rodrigue, Joel & Sasaki, Yuya, 2023.
"Post-Selection Inference In Three-Dimensional Panel Data,"
Econometric Theory, Cambridge University Press, vol. 39(3), pages 623-658, June.
- Harold D. Chiang & Joel Rodrigue & Yuya Sasaki, 2019. "Post-Selection Inference in Three-Dimensional Panel Data," Papers 1904.00211, arXiv.org, revised Apr 2019.
- Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.
- Mehmet Caner, 2021. "A Starting Note: A Historical Perspective in Lasso," International Econometric Review (IER), Econometric Research Association, vol. 13(1), pages 1-3, March.
- Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2014.
"Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice,"
CREATES Research Papers
2014-42, Department of Economics and Business Economics, Aarhus University.
- Laurent Callot & Anders B. Kock & Marcelo C. Medeiros, 2014. "Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice," Tinbergen Institute Discussion Papers 14-147/III, Tinbergen Institute.
Cited by:
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Anders Bredahl Kock & Haihan Tang, 2014.
"Inference in High-dimensional Dynamic Panel Data Models,"
CREATES Research Papers
2014-58, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Hafner, C. M. & Linton, O., 2016.
"Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case,"
Cambridge Working Papers in Economics
1664, Faculty of Economics, University of Cambridge.
- Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers CWP52/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- HAFNER, Christian & LINTON, Oliver B. & TANG, Haihan, 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," LIDAM Discussion Papers CORE 2016044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
- Hafner, C. M. & Linton, O., 2016.
"Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case,"
Cambridge Working Papers in Economics
1664, Faculty of Economics, University of Cambridge.
- Mehmet Caner & Anders Bredahl Kock, 2013.
"Oracle Inequalities for Convex Loss Functions with Non-Linear Targets,"
CREATES Research Papers
2013-51, Department of Economics and Business Economics, Aarhus University.
- Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
Cited by:
- Koike, Yuta & Tanoue, Yuta, 2019. "Oracle inequalities for sign constrained generalized linear models," Econometrics and Statistics, Elsevier, vol. 11(C), pages 145-157.
- Anders Bredahl Kock, 2013.
"Oracle inequalities for high-dimensional panel data models,"
CREATES Research Papers
2013-20, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Bent Jesper Christensen & Morten Ørregaard Nielsen & Jie Zhu, 2012.
"The impact of financial crises on the risk-return tradeoff and the leverage effect,"
CREATES Research Papers
2012-19, Department of Economics and Business Economics, Aarhus University.
- Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
- Bent Jesper Christensen & Jie Zhu & Morten Ø. Nielsen, 2012. "The Impact Of Financial Crises On The Risk-return Tradeoff And The Leverage Effect," Working Paper 1295, Economics Department, Queen's University.
- Anders Bredahl Kock & Haihan Tang, 2014. "Inference in High-dimensional Dynamic Panel Data Models," CREATES Research Papers 2014-58, Department of Economics and Business Economics, Aarhus University.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014.
"Inference in High Dimensional Panel Models with an Application to Gun Control,"
Papers
1411.6507, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers CWP50/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers 50/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
- Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
- Bent Jesper Christensen & Morten Ørregaard Nielsen & Jie Zhu, 2012.
"The impact of financial crises on the risk-return tradeoff and the leverage effect,"
CREATES Research Papers
2012-19, Department of Economics and Business Economics, Aarhus University.
- Malene Kallestrup-Lamb & Anders Bredahl Kock & Johannes Tang Kristensen, 2013.
"Lassoing the Determinants of Retirement,"
CREATES Research Papers
2013-21, Department of Economics and Business Economics, Aarhus University.
- Malene Kallestrup-Lamb & Anders Bredahl Kock & Johannes Tang Kristensen, 2016. "Lassoing the Determinants of Retirement," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1522-1561, December.
Cited by:
- Mehmet Caner & Anders Bredahl Kock, 2013.
"Oracle Inequalities for Convex Loss Functions with Non-Linear Targets,"
CREATES Research Papers
2013-51, Department of Economics and Business Economics, Aarhus University.
- Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012.
"Oracle Inequalities for High Dimensional Vector Autoregressions,"
CREATES Research Papers
2012-16, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
Cited by:
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Liang, Chong & Schienle, Melanie, 2019.
"Determination of vector error correction models in high dimensions,"
Working Paper Series in Economics
124, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
- Thilo Reinschlussel & Martin C. Arnold, 2024. "Information-Enriched Selection of Stationary and Non-Stationary Autoregressions using the Adaptive Lasso," Papers 2402.16580, arXiv.org, revised Jul 2024.
- Liqian Cai & Arnab Bhattacharjee & Roger Calantone & Taps Maiti, 2019. "Variable Selection with Spatially Autoregressive Errors: A Generalized Moments LASSO Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 146-200, September.
- Chen, J. & Li, D. & Li, Y. & Linton, O. B., 2022.
"Estimating Time-Varying Networks for High-Dimensional Time Series,"
Cambridge Working Papers in Economics
2273, Faculty of Economics, University of Cambridge.
- Jia Chen & Degui Li & Yuning Li & Oliver Linton, 2023. "Estimating Time-Varying Networks for High-Dimensional Time Series," Papers 2302.02476, arXiv.org.
- Chen, J. & Li, D. & Li, Y. & Linton, O. B., 2022. "Estimating Time-Varying Networks for High-Dimensional Time Series," Janeway Institute Working Papers 2231, Faculty of Economics, University of Cambridge.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023.
"Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2019. "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure," Papers 1902.10991, arXiv.org, revised Dec 2020.
- Jonas Krampe & Efstathios Paparoditis, 2021. "Sparsity concepts and estimation procedures for high‐dimensional vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 554-579, September.
- Matteo Barigozzi & Christian Brownlees, 2013.
"Nets: Network Estimation for Time Series,"
Working Papers
723, Barcelona School of Economics.
- Barigozzi, Matteo & Brownlees, Christian T., 2018. "Nets: network estimation for time series," LSE Research Online Documents on Economics 90493, London School of Economics and Political Science, LSE Library.
- Matteo Barigozzi & Christian T. Brownlees, 2013. "Nets: Network estimation for time series," Economics Working Papers 1391, Department of Economics and Business, Universitat Pompeu Fabra.
- Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
- Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"High-Dimensional Granger Causality Tests with an Application to VIX and News,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 605-635.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2019. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Papers 1912.06307, arXiv.org, revised Feb 2021.
- Reuvers, Hanno & Wijler, Etienne, 2024. "Sparse generalized Yule–Walker estimation for large spatio-temporal autoregressions with an application to NO2 satellite data," Journal of Econometrics, Elsevier, vol. 239(1).
- Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023.
"High-dimensional VARs with common factors,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
- Ke Miao & Peter C.B. Phillips & Liangjun Su, 2020. "High-Dimensional VARs with Common Factors," Cowles Foundation Discussion Papers 2252, Cowles Foundation for Research in Economics, Yale University.
- Bicu, A.C. & Lieb, L.M., 2015. "Cross-border effects of fiscal policy in the Eurozone," Research Memorandum 019, Maastricht University, Graduate School of Business and Economics (GSBE).
- Gianluca Cubadda & Alain Hecq, 2022.
"Dimension Reduction for High Dimensional Vector Autoregressive Models,"
CEIS Research Paper
534, Tor Vergata University, CEIS, revised 24 Mar 2022.
- Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
- Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019.
"LASSO-Driven Inference in Time and Space,"
CeMMAP working papers
CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
- Bent Jesper Christensen & Morten Ørregaard Nielsen & Jie Zhu, 2012.
"The impact of financial crises on the risk-return tradeoff and the leverage effect,"
CREATES Research Papers
2012-19, Department of Economics and Business Economics, Aarhus University.
- Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2015. "The impact of financial crises on the risk–return tradeoff and the leverage effect," Economic Modelling, Elsevier, vol. 49(C), pages 407-418.
- Bent Jesper Christensen & Jie Zhu & Morten Ø. Nielsen, 2012. "The Impact Of Financial Crises On The Risk-return Tradeoff And The Leverage Effect," Working Paper 1295, Economics Department, Queen's University.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2024.
"Local projection inference in high dimensions,"
The Econometrics Journal, Royal Economic Society, vol. 27(3), pages 323-342.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2022. "Local Projection Inference in High Dimensions," Papers 2209.03218, arXiv.org, revised Apr 2024.
- Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
- Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
- Schnücker, A.M., 2019. "Penalized Estimation of Panel Vector Autoregressive Models," Econometric Institute Research Papers EI-2019-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Fengler, Matthias R. & Gisler, Katja I. M., 2014.
"A variance spillover analysis without covariances: what do we miss?,"
Economics Working Paper Series
1409, University of St. Gallen, School of Economics and Political Science.
- Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
- Audrino, Francesco & Camponovo, Lorenzo, 2013.
"Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models,"
Economics Working Paper Series
1327, University of St. Gallen, School of Economics and Political Science.
- Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.
- Zachary F. Fisher & Younghoon Kim & Barbara L. Fredrickson & Vladas Pipiras, 2022. "Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 1-29, June.
- Härdle, Wolfgang Karl & Chen, Shi & Liang, Chong & Schienle, Melanie, 2018. "Time-varying Limit Order Book Networks," IRTG 1792 Discussion Papers 2018-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Hendrik Kaufmann & Robinson Kruse & Philipp Sibbertsen, 2012.
"On tests for linearity against STAR models with deterministic trends,"
CREATES Research Papers
2012-20, Department of Economics and Business Economics, Aarhus University.
- Kaufmann, Hendrik & Kruse, Robinson & Sibbertsen, Philipp, 2012. "On tests for linearity against STAR models with deterministic trends," Economics Letters, Elsevier, vol. 117(1), pages 268-271.
- Kaufmann, Hendrik & Kruse, Robinson & Sibbertsen, Philipp, 2012. "On tests for linearity against STAR models with deterministic trends," Hannover Economic Papers (HEP) dp-492, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
- Laurent Callot & Johannes Tang Kristensen, 2014.
"Vector Autoregressions with parsimoniously Time Varying Parameters and an Application to Monetary Policy,"
Tinbergen Institute Discussion Papers
14-145/III, Tinbergen Institute, revised 09 Apr 2015.
- Laurent Callot & Johannes Tang Kristensen, 2014. "Vector Autoregressions with Parsimoniously Time Varying Parameters and an Application to Monetary Policy," CREATES Research Papers 2014-41, Department of Economics and Business Economics, Aarhus University.
- Ling Peng & Yan Zhu & Wenxuan Zhong, 2023. "Lasso regression in sparse linear model with $$\varphi $$ φ -mixing errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 1-26, January.
- Mehmet Caner & Anders Bredahl Kock, 2013.
"Oracle Inequalities for Convex Loss Functions with Non-Linear Targets,"
CREATES Research Papers
2013-51, Department of Economics and Business Economics, Aarhus University.
- Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
- Ahelegbey, Daniel Felix & Giudici, Paolo, 2022.
"NetVIX — A network volatility index of financial markets,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
- Daniel Felix Ahelegbey & Paolo Giudici, 2020. "NetVIX - A Network Volatility Index of Financial Markets," DEM Working Papers Series 192, University of Pavia, Department of Economics and Management.
- Matteo Barigozzi & Marc Hallin, 2017.
"A network analysis of the volatility of high dimensional financial series,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
- Barigozzi, Matteo & Hallin, Marc, 2017. "A network analysis of the volatility of high-dimensionalfinancial series," LSE Research Online Documents on Economics 67456, London School of Economics and Political Science, LSE Library.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2012.
"Estimating High-Dimensional Time Series Models,"
CREATES Research Papers
2012-37, Department of Economics and Business Economics, Aarhus University.
- MArcelo C. Medeiros & Eduardo F.Mendes, 2012. "Estimating High-Dimensional Time Series Models," Textos para discussão 602, Department of Economics PUC-Rio (Brazil).
- Chen, Shi & Härdle, Wolfgang & Schienle, Melanie, 2021. "High-dimensional statistical learning techniques for time-varying limit order book networks," IRTG 1792 Discussion Papers 2021-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016.
"Sparse Graphical Vector Autoregression: A Bayesian Approach,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
- Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
- Yujie Xue & Masanobu Taniguchi, 2020. "Modified LASSO estimators for time series regression models with dependent disturbances," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 845-869, December.
- Francesco Audrino & Simon D. Knaus, 2016.
"Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
- Audrino, Francesco & Knaus, Simon, 2012. "Lassoing the HAR model: A Model Selection Perspective on Realized Volatility Dynamics," Economics Working Paper Series 1224, University of St. Gallen, School of Economics and Political Science.
- Alessi, Lucia & Balduzzi, Pierluigi & Savona, Roberto, 2019. "Anatomy of a Sovereign Debt Crisis: CDS Spreads and Real-Time Macroeconomic Data," JRC Working Papers in Economics and Finance 2019-03, Joint Research Centre, European Commission.
- Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
- Smeekes, Stephan & Wijler, Etiënne, 2016.
"Macroeconomic Forecasting Using Penalized Regression Methods,"
Research Memorandum
039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Smeekes, Stephan & Wijler, Etienne, 2021.
"An automated approach towards sparse single-equation cointegration modelling,"
Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
- Stephan Smeekes & Etienne Wijler, 2018. "An Automated Approach Towards Sparse Single-Equation Cointegration Modelling," Papers 1809.08889, arXiv.org, revised Jul 2020.
- Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2020.
"Lasso Inference for High-Dimensional Time Series,"
Papers
2007.10952, arXiv.org, revised Sep 2022.
- Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
- Bouchouia, Mohammed & Portier, François, 2021. "High dimensional regression for regenerative time-series: An application to road traffic modeling," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Gianluca Cubadda & Barbara Guardabascio, 2017.
"Representation, Estimation and Forecasting of the Multivariate Index-Augmented Autoregressive Model,"
CEIS Research Paper
397, Tor Vergata University, CEIS, revised 13 Jul 2018.
- Cubadda, Gianluca & Guardabascio, Barbara, 2019. "Representation, estimation and forecasting of the multivariate index-augmented autoregressive model," International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
- Xu, Ning & Hong, Jian & Fisher, Timothy, 2016.
"Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso,"
MPRA Paper
71670, University Library of Munich, Germany.
- Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016. "Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso," Papers 1606.00142, arXiv.org.
- Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
- Etienne Wijler, 2022. "A restricted eigenvalue condition for unit-root non-stationary data," Papers 2208.12990, arXiv.org.
- Mr. Jorge A Chan-Lau, 2017. "Lasso Regressions and Forecasting Models in Applied Stress Testing," IMF Working Papers 2017/108, International Monetary Fund.
- Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2019.
"Regularized Estimation of High-Dimensional Vector AutoRegressions with Weakly Dependent Innovations,"
Papers
1912.09002, arXiv.org, revised Jun 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2022. "Regularized estimation of high‐dimensional vector autoregressions with weakly dependent innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 532-557, July.
- Li, Qiang & Nong, Huifu, 2022. "A closer look at Chinese housing market: Measuring intra-city submarket connectedness in Shanghai and Guangzhou," China Economic Review, Elsevier, vol. 74(C).
- Dominik Bertsche & Ralf Brüggemann & Christian Kascha, 2023. "Directed graphs and variable selection in large vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 223-246, March.
- Matteo Barigozzi & Marc Hallin, 2015.
"Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series,"
Papers
1510.05118, arXiv.org, revised Jul 2016.
- Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Working Papers ECARES ECARES 2015-34, ULB -- Universite Libre de Bruxelles.
- Chen, Shi & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2018. "Regularization Approach for Network Modeling of German Energy Market," IRTG 1792 Discussion Papers 2018-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Dallakyan, Aramayis & Kim, Rakheon & Pourahmadi, Mohsen, 2022. "Time series graphical lasso and sparse VAR estimation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
- Gianluca Cubadda & Marco Mazzali, 2023.
"The Vector Error Correction Index Model: Representation, Estimation and Identification,"
CEIS Research Paper
556, Tor Vergata University, CEIS, revised 04 Apr 2023.
- Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
- Zhu, Ke & Liu, Hanzhong, 2022. "Confidence intervals for parameters in high-dimensional sparse vector autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Boyao Wu & Difang Huang & Muzi Chen, 2024. "Estimating Contagion Mechanism in Global Equity Market with Time-Zone Effect," Papers 2404.04335, arXiv.org.
- Zhang, Xingmin & Zhang, Shuai & Lu, Liping, 2022. "The banking instability and climate change: Evidence from China," Energy Economics, Elsevier, vol. 106(C).
- Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2023. "Sparse High-Dimensional Vector Autoregressive Bootstrap," Papers 2302.01233, arXiv.org.
- Alain Hecq & Ivan Ricardo & Ines Wilms, 2024. "Reduced-Rank Matrix Autoregressive Models: A Medium $N$ Approach," Papers 2407.07973, arXiv.org.
- Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson, 2021. "Performance of Empirical Risk Minimization for Linear Regression with Dependent Data," Papers 2104.12127, arXiv.org, revised May 2023.
- Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022.
"On LASSO for predictive regression,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
- Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Inference in Non-stationary High-Dimensional VARs," Papers 2302.01434, arXiv.org, revised Sep 2023.
- Baek, Changryong & Davis, Richard A. & Pipiras, Vladas, 2017. "Sparse seasonal and periodic vector autoregressive modeling," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 103-126.
- Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
- Krampe, J. & Paparoditis, E. & Trenkler, C., 2023. "Structural inference in sparse high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 234(1), pages 276-300.
- Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015.
"Adaptative LASSO estimation for ARDL models with GARCH innovations,"
Textos para discussão
637, Department of Economics PUC-Rio (Brazil).
- Marcelo C. Medeiros & Eduardo F. Mendes, 2017. "Adaptive LASSO estimation for ARDL models with GARCH innovations," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 622-637, October.
- Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2014.
"Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice,"
CREATES Research Papers
2014-42, Department of Economics and Business Economics, Aarhus University.
- Laurent Callot & Anders B. Kock & Marcelo C. Medeiros, 2014. "Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice," Tinbergen Institute Discussion Papers 14-147/III, Tinbergen Institute.
- Sander Barendse, 2023. "Expected Shortfall LASSO," Papers 2307.01033, arXiv.org, revised Jan 2024.
- Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
- Zhentao Shi & Jingyi Huang, 2019. "Forward-Selected Panel Data Approach for Program Evaluation," Papers 1908.05894, arXiv.org, revised Apr 2021.
- Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
- Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Estimation of Grouped Time-Varying Network Vector Autoregression Models," Papers 2303.10117, arXiv.org, revised Mar 2024.
- Guðmundsson, Guðmundur Stefán & Brownlees, Christian, 2021. "Detecting groups in large vector autoregressions," Journal of Econometrics, Elsevier, vol. 225(1), pages 2-26.
- Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
- Hanno Reuvers & Etienne Wijler, 2021. "Sparse Generalized Yule-Walker Estimation for Large Spatio-temporal Autoregressions with an Application to NO2 Satellite Data," Papers 2108.02864, arXiv.org, revised Dec 2021.
- Anders Bredahl Kock, 2012.
"On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions,"
CREATES Research Papers
2012-05, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Matteo Barigozzi & Christian Brownlees, 2013.
"Nets: Network Estimation for Time Series,"
Working Papers
723, Barcelona School of Economics.
- Barigozzi, Matteo & Brownlees, Christian T., 2018. "Nets: network estimation for time series," LSE Research Online Documents on Economics 90493, London School of Economics and Political Science, LSE Library.
- Matteo Barigozzi & Christian T. Brownlees, 2013. "Nets: Network estimation for time series," Economics Working Papers 1391, Department of Economics and Business, Universitat Pompeu Fabra.
- Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
- Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
- Audrino, Francesco & Camponovo, Lorenzo, 2013.
"Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models,"
Economics Working Paper Series
1327, University of St. Gallen, School of Economics and Political Science.
- Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.
- Francesco Audrino & Simon D. Knaus, 2016.
"Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
- Audrino, Francesco & Knaus, Simon, 2012. "Lassoing the HAR model: A Model Selection Perspective on Realized Volatility Dynamics," Economics Working Paper Series 1224, University of St. Gallen, School of Economics and Political Science.
- Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
- Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
- Matteo Barigozzi & Christian Brownlees, 2013.
"Nets: Network Estimation for Time Series,"
Working Papers
723, Barcelona School of Economics.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012.
"Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions,"
CREATES Research Papers
2012-38, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Matteo Mogliani & Anna Simoni, 2020.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Post-Print
hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Sonan Memon, 2021.
"Machine Learning for Economists: An Introduction,"
PIDE Knowledge Brief
2021:33, Pakistan Institute of Development Economics.
- Sonan Memon, 2021. "Machine Learning for Economists: An Introduction," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 60(2), pages 201-211.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012.
"Oracle Inequalities for High Dimensional Vector Autoregressions,"
CREATES Research Papers
2012-16, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Smeekes, Stephan & Wijler, Etiënne, 2016.
"Macroeconomic Forecasting Using Penalized Regression Methods,"
Research Memorandum
039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
- Renjie Lu & Philip L.H. Yu & Xiaohang Wang, 2020. "Sparse vector error correction models with application to cointegration‐based trading," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 297-321, September.
- Matteo Mogliani & Anna Simoni, 2020.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Post-Print
hal-03089878, HAL.
- Anders Bredahl Kock & Timo Teräsvirta, 2011.
"Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009,"
CREATES Research Papers
2011-28, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
Cited by:
- Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015.
"Macroeconomic forecasting during the Great Recession: The return of non-linearity?,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
- Ferrara, L. & Marcellino, M. & Mogliani, M., 2012. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," Working papers 383, Banque de France.
- Laurent Ferrara & Massimiliano Marcellino & Matteo Mogliani, 2015. "Macroeconomic forecasting during the Great Recession: the return of non-linearity?," Post-Print hal-01635951, HAL.
- Marcellino, Massimiliano & Ferrara, Laurent & Mogliani, Matteo, 2013. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," CEPR Discussion Papers 9313, C.E.P.R. Discussion Papers.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015.
"“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”,"
AQR Working Papers
201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
- Jahn, Malte, 2020. "Artificial neural network regression models in a panel setting: Predicting economic growth," Economic Modelling, Elsevier, vol. 91(C), pages 148-154.
- Claudimar Pereira da Veiga & Cássia Rita Pereira da Veiga & Felipe Mendes Girotto & Diego Antonio Bittencourt Marconatto & Zhaohui Su, 2024. "Implementation of the ARIMA model for prediction of economic variables: evidence from the health sector in Brazil," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017.
"“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting”,"
AQR Working Papers
201701, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2017.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting"," IREA Working Papers 201701, University of Barcelona, Research Institute of Applied Economics, revised Jan 2017.
- Zhidan Luo & Wei Guo & Qingfu Liu & Yiuman Tse, 2023. "A hybrid prediction model with time‐varying gain tracking differentiator in Taylor expansion: Evidence from precious metals," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1138-1149, August.
- Diogo de Prince & Emerson Fernandes Marçal & Pedro L. Valls Pereira, 2022. "Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy," Econometrics, MDPI, vol. 10(2), pages 1-34, June.
- Malte Jahn, 2023. "Artificial neural networks and time series of counts: A class of nonlinear INGARCH models," Papers 2304.01025, arXiv.org.
- Jena, Pradyot Ranjan & Majhi, Ritanjali & Kalli, Rajesh & Managi, Shunsuke & Majhi, Babita, 2021. "Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 324-339.
- Jahn, Malte, 2018. "Artificial neural network regression models: Predicting GDP growth," HWWI Research Papers 185, Hamburg Institute of International Economics (HWWI).
- Marcus Buckmann & Andreas Joseph, 2023. "An Interpretable Machine Learning Workflow with an Application to Economic Forecasting," International Journal of Central Banking, International Journal of Central Banking, vol. 19(4), pages 449-522, October.
- Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
- Ahmed Ramzy Mohamed, 2022. "Artificial Neural Network for Modeling the Economic Performance: A New Perspective," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(3), pages 555-575, September.
- Lee Jinu, 2019. "A Neural Network Method for Nonlinear Time Series Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-18, January.
- Malte Jahn, 2023. "Regressing on distributions: The nonlinear effect of temperature on regional economic growth," Papers 2309.10481, arXiv.org.
- Anders Bredahl Kock & Timo Teräsvirta, 2011.
"Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques,"
CREATES Research Papers
2011-27, Department of Economics and Business Economics, Aarhus University.
- Anders Bredahl Kock & Timo Teräsvirta, 2016. "Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
Cited by:
- Anders Bredahl Kock & Timo Teräsvirta, 2011.
"Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009,"
CREATES Research Papers
2011-28, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
- Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
- Tea Šestanović & Josip Arnerić, 2021. "Can Recurrent Neural Networks Predict Inflation in Euro Zone as Good as Professional Forecasters?," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
- Håvard Hungnes, 2020. "Equal predictability test for multi-step-ahead system forecasts invariant to linear transformations," Discussion Papers 931, Statistics Norway, Research Department.
- David Hendry & Lea Schneider & Jason E. Smerdon, 2016.
"Detecting Volcanic Eruptions in Temperature Reconstructions by Designed Break-Indicator Saturation,"
Economics Series Working Papers
780, University of Oxford, Department of Economics.
- Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
- Guilherme Schultz Lindenmeyer & Hudson Silva Torrent, 2024. "Boosting and Predictability of Macroeconomic Variables: Evidence from Brazil," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 377-409, July.
- Muhammad Nadim Hanif & Khurrum S. Mughal & Javed Iqbal, 2018. "A Thick ANN Model for Forecasting Inflation," SBP Working Paper Series 99, State Bank of Pakistan, Research Department.
- Kock Anders Bredahl, 2011.
"Forecasting with Universal Approximators and a Learning Algorithm,"
Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
- Anders Bredahl Kock, 2009. "Forecasting with Universal Approximators and a Learning Algorithm," CREATES Research Papers 2009-18, Department of Economics and Business Economics, Aarhus University.
- Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2023. "Econometrics of Machine Learning Methods in Economic Forecasting," Papers 2308.10993, arXiv.org.
- Kauppi, Heikki & Virtanen, Timo, 2021. "Boosting nonlinear predictability of macroeconomic time series," International Journal of Forecasting, Elsevier, vol. 37(1), pages 151-170.
- Heikki Kauppi & Timo Virtanen, 2018. "Boosting Non-linear Predictabilityof Macroeconomic Time Series," Discussion Papers 124, Aboa Centre for Economics.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
- Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
- Håvard Hungnes, 2018. "Encompassing tests for evaluating multi-step system forecasts invariant to linear transformations," Discussion Papers 871, Statistics Norway, Research Department.
- Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Lee Jinu, 2019. "A Neural Network Method for Nonlinear Time Series Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-18, January.
- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
- Anders Bredahl Kock, 2010.
"Oracle Efficient Variable Selection in Random and Fixed Effects Panel Data Models,"
CREATES Research Papers
2010-56, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl, 2013. "Oracle Efficient Variable Selection In Random And Fixed Effects Panel Data Models," Econometric Theory, Cambridge University Press, vol. 29(1), pages 115-152, February.
Cited by:
- Caner, Mehmet & Kock, Anders Bredahl, 2018.
"Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
- Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
- Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Cambridge Working Papers in Economics 2242, Faculty of Economics, University of Cambridge.
- Guohua Feng & Jiti Gao & Bin Peng & Xiaohui Zhang, 2015.
"A Varying-Coefficient Panel Data Model with Fixed Effects: Theory and an Application to U.S. Commercial Banks,"
Monash Econometrics and Business Statistics Working Papers
9/15, Monash University, Department of Econometrics and Business Statistics.
- Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
- Mehmet Caner & Anders Bredahl Kock, 2013.
"Oracle Inequalities for Convex Loss Functions with Non-Linear Targets,"
CREATES Research Papers
2013-51, Department of Economics and Business Economics, Aarhus University.
- Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012.
"Oracle Inequalities for High Dimensional Vector Autoregressions,"
CREATES Research Papers
2012-16, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2020.
"Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data: Theory and Application,"
Papers
2008.03600, arXiv.org, revised Nov 2021.
- Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
- Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
- Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
- Carlos Lamarche & Thomas Parker, 2022.
"Wild Bootstrap Inference For Penalized Quantile Regression For Longitudinal Data,"
Working Papers
22003 Classification-C15,, University of Waterloo, Department of Economics.
- Carlos Lamarche & Thomas Parker, 2020. "Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data," Papers 2004.05127, arXiv.org, revised May 2022.
- Lamarche, Carlos & Parker, Thomas, 2023. "Wild bootstrap inference for penalized quantile regression for longitudinal data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
- Xun Lu & Su Liangjun, 2015.
"Shrinkage Estimation of Dynamic Panel Data Models with Interactive Fixed Effects,"
Working Papers
02-2015, Singapore Management University, School of Economics.
- Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
- Jia Chen & Jiti Gao, 2014. "Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 15/14, Monash University, Department of Econometrics and Business Statistics.
- Xianyi Wu & Xian Zhou, 2019. "On Hodges’ superefficiency and merits of oracle property in model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1093-1119, October.
- Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Janeway Institute Working Papers 2218, Faculty of Economics, University of Cambridge.
- Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
- Xi Chen & Ye Luo & Martin Spindler, 2019. "Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel Data," Papers 1912.12867, arXiv.org, revised Jan 2020.
- Oliver Linton & Maximilian Ruecker & Michael Vogt & Christopher Walsh, 2022. "Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects," Papers 2206.12152, arXiv.org, revised Nov 2024.
- Chiang, Harold D. & Rodrigue, Joel & Sasaki, Yuya, 2023.
"Post-Selection Inference In Three-Dimensional Panel Data,"
Econometric Theory, Cambridge University Press, vol. 39(3), pages 623-658, June.
- Harold D. Chiang & Joel Rodrigue & Yuya Sasaki, 2019. "Post-Selection Inference in Three-Dimensional Panel Data," Papers 1904.00211, arXiv.org, revised Apr 2019.
- Anders Bredahl Kock & Timo Teräsvirta, 2010.
"Forecasting with nonlinear time series models,"
CREATES Research Papers
2010-01, Department of Economics and Business Economics, Aarhus University.
Cited by:
- Masayoshi Hayashi, 2012.
"Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program,"
CIRJE F-Series
CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
- Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
- Kirstin Hubrich & Timo Teräsvirta, 2013. "Thresholds and Smooth Transitions in Vector Autoregressive Models," CREATES Research Papers 2013-18, Department of Economics and Business Economics, Aarhus University.
- Anders Bredahl Kock & Timo Teräsvirta, 2011.
"Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009,"
CREATES Research Papers
2011-28, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
- Anders Bredahl Kock & Timo Teräsvirta, 2016.
"Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
- Ramazan Gencay & Ege Yazgan, 2017. "When Are Wavelets Useful Forecasters?," Working Papers 1704, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012.
"Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle,"
Working Paper series
17_12, Rimini Centre for Economic Analysis.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an optimal forecast combination? A stochastic dominance approach applied to the forecast combination puzzle," Working Papers 1206, University of Guelph, Department of Economics and Finance.
- Oscar Claveria & Salvador Torra, 2013.
"“Forecasting Business surveys indicators: neural networks vs. time series models”,"
IREA Working Papers
201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
- Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015.
"“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”,"
AQR Working Papers
201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
- Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
- Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
- Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
- Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
- Meriam BouAli & Adnen Ben Nasr & Abdelwahed Trabelsi, 2016. "A Nonlinear Approach for Modeling and Forecasting US Business Cycles," International Economic Journal, Taylor & Francis Journals, vol. 30(1), pages 39-74, March.
- Shahid IQBAL & Maqbool H. SIAL, 2016. "Projections of Inflation Dynamics for Pakistan: GMDH Approach," Journal of Economics and Political Economy, KSP Journals, vol. 3(3), pages 536-559, September.
- Masayoshi Hayashi, 2012.
"Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program,"
CIRJE F-Series
CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
- Anders Bredahl Kock, 2009.
"Forecasting with Universal Approximators and a Learning Algorithm,"
CREATES Research Papers
2009-18, Department of Economics and Business Economics, Aarhus University.
- Kock Anders Bredahl, 2011. "Forecasting with Universal Approximators and a Learning Algorithm," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
Cited by:
- Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
- Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
- Shahid IQBAL & Maqbool H. SIAL, 2016. "Projections of Inflation Dynamics for Pakistan: GMDH Approach," Journal of Economics and Political Economy, KSP Journals, vol. 3(3), pages 536-559, September.
Articles
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
See citations under working paper version above.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022.
"Functional Sequential Treatment Allocation,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
See citations under working paper version above.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2018. "Functional Sequential Treatment Allocation," Papers 1812.09408, arXiv.org, revised Aug 2020.
- Anders Bredahl Kock & David Preinerstorfer, 2019.
"Power in High‐Dimensional Testing Problems,"
Econometrica, Econometric Society, vol. 87(3), pages 1055-1069, May.
See citations under working paper version above.
- Anders Bredahl Kock & David Preinerstorfer, 2017. "Power in High-dimensional testing Problems," Working Papers ECARES ECARES 2017-42, ULB -- Universite Libre de Bruxelles.
- Kock, Anders Bredahl & Tang, Haihan, 2019.
"Uniform Inference In High-Dimensional Dynamic Panel Data Models With Approximately Sparse Fixed Effects,"
Econometric Theory, Cambridge University Press, vol. 35(2), pages 295-359, April.
Cited by:
- Daniel Garcia & Juha Tolvanen & Alexander K. Wagner, 2022.
"Demand Estimation Using Managerial Responses to Automated Price Recommendations,"
Management Science, INFORMS, vol. 68(11), pages 7918-7939, November.
- Daniel Garcia & Juha Tolvanen & Alexander K. Wagner, 2021. "Demand Estimation Using Managerial Responses to Automated Price Recommendations," CESifo Working Paper Series 9127, CESifo.
- Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Cambridge Working Papers in Economics 2242, Faculty of Economics, University of Cambridge.
- Victor Chernozhukov & Ivan Fernandez-Val & Chen Huang & Weining Wang, 2024.
"Arellano-bond lasso estimator for dynamic linear panel models,"
CeMMAP working papers
09/24, Institute for Fiscal Studies.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Chen Huang & Weining Wang, 2024. "Arellano-Bond LASSO Estimator for Dynamic Linear Panel Models," Papers 2402.00584, arXiv.org, revised Oct 2024.
- Carlos Lamarche & Thomas Parker, 2022.
"Wild Bootstrap Inference For Penalized Quantile Regression For Longitudinal Data,"
Working Papers
22003 Classification-C15,, University of Waterloo, Department of Economics.
- Carlos Lamarche & Thomas Parker, 2020. "Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data," Papers 2004.05127, arXiv.org, revised May 2022.
- Lamarche, Carlos & Parker, Thomas, 2023. "Wild bootstrap inference for penalized quantile regression for longitudinal data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2019.
"Multiway Cluster Robust Double/Debiased Machine Learning,"
Papers
1909.03489, arXiv.org, revised Mar 2020.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2022. "Multiway Cluster Robust Double/Debiased Machine Learning," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1046-1056, June.
- Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Janeway Institute Working Papers 2218, Faculty of Economics, University of Cambridge.
- Oliver Linton & Maximilian Ruecker & Michael Vogt & Christopher Walsh, 2022. "Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects," Papers 2206.12152, arXiv.org, revised Nov 2024.
- Daniel Garcia & Juha Tolvanen & Alexander K. Wagner, 2022.
"Demand Estimation Using Managerial Responses to Automated Price Recommendations,"
Management Science, INFORMS, vol. 68(11), pages 7918-7939, November.
- Caner, Mehmet & Kock, Anders Bredahl, 2018.
"Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
See citations under working paper version above.
- Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2017.
"Sharp Threshold Detection Based on Sup-Norm Error Rates in High-Dimensional Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 250-264, April.
See citations under working paper version above.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2015. "Sharp Threshold Detection based on Sup-Norm Error Rates in High-dimensional Models," Tinbergen Institute Discussion Papers 15-019/III, Tinbergen Institute.
- Laurent Callot & Mehmet Caner & Anders Bredahl Kock & Juan Andres Riquelme, 2015. "Sharp Threshold Detection Based on Sup-norm Error rates in High-dimensional Models," CREATES Research Papers 2015-10, Department of Economics and Business Economics, Aarhus University.
- Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2017.
"Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 140-158, January.
Cited by:
- Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Golosnoy, Vasyl & Gribisch, Bastian & Seifert, Miriam Isabel, 2019. "Exponential smoothing of realized portfolio weights," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 222-237.
- Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
- Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
- Zhang, Hua & Chen, Jinyu & Shao, Liuguo, 2021. "Dynamic spillovers between energy and stock markets and their implications in the context of COVID-19," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
LEO Working Papers / DR LEO
2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
- Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ekaterina Seregina, 2020. "A Basket Half Full: Sparse Portfolios," Papers 2011.04278, arXiv.org, revised Apr 2021.
- Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
- Fabrizio Cipollini & Giampiero M. Gallo & Alessandro Palandri, 2020.
"A dynamic conditional approach to portfolio weights forecasting,"
Papers
2004.12400, arXiv.org.
- Fabrizio Cipollini & Giampiero Gallo & Alessandro Palandri, 2020. "A Dynamic Conditional Approach to Portfolio Weights Forecasting," Econometrics Working Papers Archive 2020_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Jin, Xin & Maheu, John M & Yang, Qiao, 2017.
"Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices,"
MPRA Paper
81920, University Library of Munich, Germany.
- Xin Jin & John M. Maheu & Qiao Yang, 2018. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," Working Paper series 18-02, Rimini Centre for Economic Analysis.
- Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
- Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
- Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
- Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
- Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).
- Chao Zhang & Xingyue Pu & Mihai Cucuringu & Xiaowen Dong, 2023. "Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects," Papers 2308.01419, arXiv.org.
- Afees A. Salisu & Riza Demirer & Rangan Gupta, 2023. "Technological Shocks and Stock Market Volatility Over a Century: A GARCH-MIDAS Approach," Working Papers 202308, University of Pretoria, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combinations,"
Papers
2011.02077, arXiv.org, revised May 2021.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
- Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
- Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
- Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
- Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
- Duan, Xiaoping & Xiao, Ya & Ren, Xiaohang & Taghizadeh-Hesary, Farhad & Duan, Kun, 2023. "Dynamic spillover between traditional energy markets and emerging green markets: Implications for sustainable development," Resources Policy, Elsevier, vol. 82(C).
- Rafael Alves & Diego S. de Brito & Marcelo C. Medeiros & Ruy M. Ribeiro, 2023. "Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage," Papers 2303.16151, arXiv.org.
- Vogler, Jan & Golosnoy, Vasyl, 2023. "Unrestricted maximum likelihood estimation of multivariate realized volatility models," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1063-1074.
- Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
- Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
- Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
- Luca Barbaglia & Christophe Croux & Ines Wilms, 2017.
"Volatility Spillovers and Heavy Tails: A Large t-Vector AutoRegressive Approach,"
Papers
1708.02073, arXiv.org.
- Luca Barbaglia & Christophe Croux & Ines Wilms, 2017. "Volatility spillovers and heavy tails: a large t-Vector AutoRegressive approach," Working Papers of Department of Decision Sciences and Information Management, Leuven 590528, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
- Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
- Vasyl Golosnoy & Benno Hildebrandt & Steffen Köhler, 2019. "Modeling and Forecasting Realized Portfolio Diversification Benefits," JRFM, MDPI, vol. 12(3), pages 1-16, July.
- Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
- Jiawen Luo & Qun Zhang, 2024. "Air pollution, weather factors, and realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 151-217, February.
- Salisu, Afees A. & Akinsomi, Omokolade & Ametefe, Frank Kwakutse & Hammed, Yinka S., 2024.
"Gold market volatility and REITs' returns during tranquil and turbulent episodes,"
International Review of Financial Analysis, Elsevier, vol. 95(PA).
- Kola Akinsomi & Afees Salisu & Ametefe Frank & Hammed Yinka, 2024. "Gold market volatility and REITs' returns during tranquil and turbulent episodes," ERES eres2024-222, European Real Estate Society (ERES).
- Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
- Jiawen Luo & Oguzhan Cepni & Riza Demirer & Rangan Gupta, 2022. "Forecasting Multivariate Volatilities with Exogenous Predictors: An Application to Industry Diversification Strategies," Working Papers 202258, University of Pretoria, Department of Economics.
- Tingting Lan & Liuguo Shao & Hua Zhang & Caijun Yuan, 2023. "The impact of pandemic on dynamic volatility spillover network of international stock markets," Empirical Economics, Springer, vol. 65(5), pages 2115-2144, November.
- Cipollini, Fabrizio & Gallo, Giampiero M. & Palandri, Alessandro, 2021. "A dynamic conditional approach to forecasting portfolio weights," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1111-1126.
- Barbaglia, Luca & Croux, Christophe & Wilms, Ines, 2020. "Volatility spillovers in commodity markets: A large t-vector autoregressive approach," Energy Economics, Elsevier, vol. 85(C).
- Kock, Anders Bredahl, 2016.
"Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models,"
Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
Cited by:
- Ilias Chronopoulos & Katerina Chrysikou & George Kapetanios, 2022. "High Dimensional Generalised Penalised Least Squares," Papers 2207.07055, arXiv.org, revised Oct 2023.
- Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Cambridge Working Papers in Economics 2242, Faculty of Economics, University of Cambridge.
- Harold D. Chiang, 2019.
"Many Average Partial Effects: with an Application to Text Regression,"
2019 Papers
pch1836, Job Market Papers.
- Harold D. Chiang, 2018. "Many Average Partial Effects: with An Application to Text Regression," Papers 1812.09397, arXiv.org, revised Jan 2022.
- Caner, Mehmet, 2023.
"Generalized linear models with structured sparsity estimators,"
Journal of Econometrics, Elsevier, vol. 236(2).
- Mehmet Caner, 2021. "Generalized Linear Models with Structured Sparsity Estimators," Papers 2104.14371, arXiv.org.
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2020.
"Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data: Theory and Application,"
Papers
2008.03600, arXiv.org, revised Nov 2021.
- Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
- Carlos Lamarche & Thomas Parker, 2022.
"Wild Bootstrap Inference For Penalized Quantile Regression For Longitudinal Data,"
Working Papers
22003 Classification-C15,, University of Waterloo, Department of Economics.
- Carlos Lamarche & Thomas Parker, 2020. "Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data," Papers 2004.05127, arXiv.org, revised May 2022.
- Lamarche, Carlos & Parker, Thomas, 2023. "Wild bootstrap inference for penalized quantile regression for longitudinal data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2019.
"Multiway Cluster Robust Double/Debiased Machine Learning,"
Papers
1909.03489, arXiv.org, revised Mar 2020.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2022. "Multiway Cluster Robust Double/Debiased Machine Learning," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1046-1056, June.
- Mehmet Caner & Kfir Eliaz, 2021. "Shoiuld Humans Lie to Machines: The Incentive Compatibility of Lasso and General Weighted Lasso," Papers 2101.01144, arXiv.org, revised Sep 2021.
- Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Janeway Institute Working Papers 2218, Faculty of Economics, University of Cambridge.
- Xi Chen & Ye Luo & Martin Spindler, 2019. "Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel Data," Papers 1912.12867, arXiv.org, revised Jan 2020.
- Oliver Linton & Maximilian Ruecker & Michael Vogt & Christopher Walsh, 2022. "Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects," Papers 2206.12152, arXiv.org, revised Nov 2024.
- Mehmet Caner & Anders Bredahl Kock, 2016.
"Oracle Inequalities for Convex Loss Functions with Nonlinear Targets,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
See citations under working paper version above.
- Mehmet Caner & Anders Bredahl Kock, 2013. "Oracle Inequalities for Convex Loss Functions with Non-Linear Targets," CREATES Research Papers 2013-51, Department of Economics and Business Economics, Aarhus University.
- Malene Kallestrup-Lamb & Anders Bredahl Kock & Johannes Tang Kristensen, 2016.
"Lassoing the Determinants of Retirement,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1522-1561, December.
See citations under working paper version above.
- Malene Kallestrup-Lamb & Anders Bredahl Kock & Johannes Tang Kristensen, 2013. "Lassoing the Determinants of Retirement," CREATES Research Papers 2013-21, Department of Economics and Business Economics, Aarhus University.
- Anders Bredahl Kock & Timo Teräsvirta, 2016.
"Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
See citations under working paper version above.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl, 2016.
"Consistent And Conservative Model Selection With The Adaptive Lasso In Stationary And Nonstationary Autoregressions,"
Econometric Theory, Cambridge University Press, vol. 32(1), pages 243-259, February.
Cited by:
- Thilo Reinschlussel & Martin C. Arnold, 2024. "Information-Enriched Selection of Stationary and Non-Stationary Autoregressions using the Adaptive Lasso," Papers 2402.16580, arXiv.org, revised Jul 2024.
- Matteo Barigozzi & Christian Brownlees, 2013.
"Nets: Network Estimation for Time Series,"
Working Papers
723, Barcelona School of Economics.
- Barigozzi, Matteo & Brownlees, Christian T., 2018. "Nets: network estimation for time series," LSE Research Online Documents on Economics 90493, London School of Economics and Political Science, LSE Library.
- Matteo Barigozzi & Christian T. Brownlees, 2013. "Nets: Network estimation for time series," Economics Working Papers 1391, Department of Economics and Business, Universitat Pompeu Fabra.
- Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
- Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
- Laurent Callot & Johannes Tang Kristensen, 2014.
"Vector Autoregressions with parsimoniously Time Varying Parameters and an Application to Monetary Policy,"
Tinbergen Institute Discussion Papers
14-145/III, Tinbergen Institute, revised 09 Apr 2015.
- Laurent Callot & Johannes Tang Kristensen, 2014. "Vector Autoregressions with Parsimoniously Time Varying Parameters and an Application to Monetary Policy," CREATES Research Papers 2014-41, Department of Economics and Business Economics, Aarhus University.
- Efstathios Polyzos & Costas Siriopoulos, 2024. "Autoregressive Random Forests: Machine Learning and Lag Selection for Financial Research," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 225-262, July.
- Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012.
"Oracle Inequalities for High Dimensional Vector Autoregressions,"
CREATES Research Papers
2012-16, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020.
"Machine Learning Advances for Time Series Forecasting,"
Papers
2012.12802, arXiv.org, revised Apr 2021.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Alessi, Lucia & Balduzzi, Pierluigi & Savona, Roberto, 2019. "Anatomy of a Sovereign Debt Crisis: CDS Spreads and Real-Time Macroeconomic Data," JRC Working Papers in Economics and Finance 2019-03, Joint Research Centre, European Commission.
- Smeekes, Stephan & Wijler, Etiënne, 2016.
"Macroeconomic Forecasting Using Penalized Regression Methods,"
Research Memorandum
039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Smeekes, Stephan & Wijler, Etienne, 2021.
"An automated approach towards sparse single-equation cointegration modelling,"
Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
- Stephan Smeekes & Etienne Wijler, 2018. "An Automated Approach Towards Sparse Single-Equation Cointegration Modelling," Papers 1809.08889, arXiv.org, revised Jul 2020.
- Mr. Jorge A Chan-Lau, 2017. "Lasso Regressions and Forecasting Models in Applied Stress Testing," IMF Working Papers 2017/108, International Monetary Fund.
- Caraiani, Petre, 2022. "Using LASSO-family models to estimate the impact of monetary policy on corporate investments," Economics Letters, Elsevier, vol. 210(C).
- Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022.
"On LASSO for predictive regression,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
- Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
- Julien Hambuckers & Li Sun & Luca Trapin, 2023. "Measuring tail risk at high-frequency: An $L_1$-regularized extreme value regression approach with unit-root predictors," Papers 2301.01362, arXiv.org.
- Chor-yiu Sin & Shu-Hui Yu, 2019. "Order selection for possibly infinite-order non-stationary time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 187-216, June.
- David Neto, 2023. "Penalized leads-and-lags cointegrating regression: a simulation study and two empirical applications," Empirical Economics, Springer, vol. 65(2), pages 949-971, August.
- Kock, Anders Bredahl & Callot, Laurent, 2015.
"Oracle inequalities for high dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
See citations under working paper version above.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl & Teräsvirta, Timo, 2014.
"Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
See citations under working paper version above.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009," CREATES Research Papers 2011-28, Department of Economics and Business Economics, Aarhus University.
- Kock, Anders Bredahl, 2013.
"Oracle Efficient Variable Selection In Random And Fixed Effects Panel Data Models,"
Econometric Theory, Cambridge University Press, vol. 29(1), pages 115-152, February.
See citations under working paper version above.
- Anders Bredahl Kock, 2010. "Oracle Efficient Variable Selection in Random and Fixed Effects Panel Data Models," CREATES Research Papers 2010-56, Department of Economics and Business Economics, Aarhus University.
- Anders Bredahl Kock & Timo Teräsvirta, 2013.
"Forecasting the Finnish Consumer Price Inflation Using Artificial Neural Network Models and Three Automated Model Selection Techniques,"
Finnish Economic Papers, Finnish Economic Association, vol. 26(1), pages 13-24, Spring.
Cited by:
- Nyoni, Thabani, 2019. "ARIMA modeling and forecasting of Consumer Price Index (CPI) in Germany," MPRA Paper 92442, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Forecasting consumer price index in Norway: An application of Box-Jenkins ARIMA models," MPRA Paper 92411, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Predicting inflation in the Kingdom of Bahrain using ARIMA models," MPRA Paper 92452, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Modeling and forecasting inflation in Philippines using ARIMA models," MPRA Paper 92429, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Predicting CPI in Singapore: An application of the Box-Jenkins methodology," MPRA Paper 92413, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Understanding inflation trends in Israel: A univariate approach," MPRA Paper 92427, University Library of Munich, Germany.
- Karol Szafranek, 2017.
"Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks,"
NBP Working Papers
262, Narodowy Bank Polski.
- Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
- Nyoni, Thabani, 2019. "Forecasting UK consumer price index using Box-Jenkins ARIMA models," MPRA Paper 92410, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Understanding inflation dynamics in the United States of America (USA): A univariate approach," MPRA Paper 92460, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Time series modeling and forecasting of the consumer price index in Japan," MPRA Paper 92409, University Library of Munich, Germany.
- Tamerlan Mashadihasanli, 2022. "Stock Market Price Forecasting Using the Arima Model: an Application to Istanbul, Turkiye," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(2), pages 439-454, July.
- Nyoni, Thabani, 2019. "Forecasting Australian CPI using ARIMA models," MPRA Paper 92412, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Modeling and forecasting inflation in Tanzania using ARIMA models," MPRA Paper 92458, University Library of Munich, Germany.
- Nyoni, Thabani, 2019. "Understanding inflation trends in Finland: A univariate approach," MPRA Paper 92448, University Library of Munich, Germany.
- Kock Anders Bredahl, 2011.
"Forecasting with Universal Approximators and a Learning Algorithm,"
Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
See citations under working paper version above.
- Anders Bredahl Kock, 2009. "Forecasting with Universal Approximators and a Learning Algorithm," CREATES Research Papers 2009-18, Department of Economics and Business Economics, Aarhus University.