Wild Bootstrap Inference For Penalized Quantile Regression For Longitudinal Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Lamarche, Carlos & Parker, Thomas, 2023. "Wild bootstrap inference for penalized quantile regression for longitudinal data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1799-1826.
- Carlos Lamarche & Thomas Parker, 2020. "Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data," Papers 2004.05127, arXiv.org, revised May 2022.
References listed on IDEAS
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018.
"Oracle Estimation of a Change Point in High-Dimensional Quantile Regression,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1184-1194, July.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2016. "Oracle Estimation of a Change Point in High Dimensional Quantile Regression," Papers 1603.00235, arXiv.org, revised Dec 2016.
- Xiaohong Chen & Demian Pouzo, 2015.
"Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models,"
Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
- Xiaohong Chen & Demian Pouzo, 2013. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," Cowles Foundation Discussion Papers 1897RR, Cowles Foundation for Research in Economics, Yale University, revised Nov 2014.
- Xiaohong Chen & Demian Pouzo, 2013. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," Cowles Foundation Discussion Papers 1897R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2014.
- Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," Papers 1411.1144, arXiv.org, revised Mar 2015.
- Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," CeMMAP working papers CWP38/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016.
"Inference in High-Dimensional Panel Models With an Application to Gun Control,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers 50/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in High Dimensional Panel Models with an Application to Gun Control," Papers 1411.6507, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers CWP50/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020.
"On the unbiased asymptotic normality of quantile regression with fixed effects,"
Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
- Antonio F. Galvao & Jiaying Gu & Stanislav Volgushev, 2018. "On the Unbiased Asymptotic Normality of Quantile Regression with Fixed Effects," Papers 1807.11863, arXiv.org, revised Feb 2020.
- Arellano, Manuel & Honore, Bo, 2001.
"Panel data models: some recent developments,"
Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 53, pages 3229-3296,
Elsevier.
- Arellano, M. & Honore, B., 2000. "Panel Data Models: Some Recent Developments," Papers 0016, Centro de Estudios Monetarios Y Financieros-.
- Manuel Arellano & Bo Honoré, 2000. "Panel Data Models: Some Recent Developments," Working Papers wp2000_0016, CEMFI.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016.
"Identifying Latent Structures in Panel Data,"
Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
- Liangjun Su & Zhentao Shi & Peter C.B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Cowles Foundation Discussion Papers 1965, Cowles Foundation for Research in Economics, Yale University.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Working Papers 07-2014, Singapore Management University, School of Economics.
- Kock, Anders Bredahl, 2013.
"Oracle Efficient Variable Selection In Random And Fixed Effects Panel Data Models,"
Econometric Theory, Cambridge University Press, vol. 29(1), pages 115-152, February.
- Anders Bredahl Kock, 2010. "Oracle Efficient Variable Selection in Random and Fixed Effects Panel Data Models," CREATES Research Papers 2010-56, Department of Economics and Business Economics, Aarhus University.
- Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
- Caner, Mehmet & Kock, Anders Bredahl, 2018.
"Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
- Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
- Chen, Xiaohong & Pouzo, Demian, 2009.
"Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals,"
Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
- Xiaohong Chen & Demian Pouzo, 2008. "Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals," Cowles Foundation Discussion Papers 1640R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2009.
- Xiaohong Chen & Demian Pouzo, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," CeMMAP working papers CWP20/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chen, Xiaohong & Pouzo, Demian, 2008. "Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals," Working Papers 38, Yale University, Department of Economics.
- Xiaohong Chen & Demian Pouzo, 2008. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," CeMMAP working papers CWP09/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Andreas Hagemann, 2017. "Cluster-Robust Bootstrap Inference in Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 446-456, January.
- Xingdong Feng & Xuming He & Jianhua Hu, 2011. "Wild bootstrap for quantile regression," Biometrika, Biometrika Trust, vol. 98(4), pages 995-999.
- Shushanik Hakobyan & John McLaren, 2016.
"Looking for Local Labor Market Effects of NAFTA,"
The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 728-741, October.
- John McLaren & Shushanik Hakobyan, 2010. "Looking for Local Labor Market Effects of NAFTA," NBER Working Papers 16535, National Bureau of Economic Research, Inc.
- Harding, Matthew & Lamarche, Carlos, 2019.
"A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment,"
Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
- Matthew Harding & Carlos Lamarche, 2018. "A Panel Quantile Approach to Attrition Bias in Big Data: Evidence from a Randomized Experiment," Papers 1808.03364, arXiv.org.
- Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
- L. Camponovo, 2015. "On the validity of the pairs bootstrap for lasso estimators," Biometrika, Biometrika Trust, vol. 102(4), pages 981-987.
- Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
- Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016.
"IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade,"
Econometrica, Econometric Society, vol. 84, pages 809-833, March.
- Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2015. "IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade," NBER Working Papers 21033, National Bureau of Economic Research, Inc.
- Gu, Jiaying & Volgushev, Stanislav, 2019. "Panel data quantile regression with grouped fixed effects," Journal of Econometrics, Elsevier, vol. 213(1), pages 68-91.
- Jinyong Hahn & Whitney Newey, 2004.
"Jackknife and Analytical Bias Reduction for Nonlinear Panel Models,"
Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
- Jinyong Hahn & Whitney K. Newey, 2003. "Jackknife and analytical bias reduction for nonlinear panel models," CeMMAP working papers CWP17/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jinyong Hahn & Whitney K. Newey, 2003. "Jackknife and analytical bias reduction for nonlinear panel models," CeMMAP working papers 17/03, Institute for Fiscal Studies.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Lan Wang & Ingrid Van Keilegom & Adam Maidman, 2018. "Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors," Biometrika, Biometrika Trust, vol. 105(4), pages 859-872.
- Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
- Matthew Harding & Carlos Lamarche, 2017.
"Penalized Quantile Regression with Semiparametric Correlated Effects: An Application with Heterogeneous Preferences,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 342-358, March.
- Harding, Matthew & Lamarche, Carlos, 2013. "Penalized Quantile Regression with Semiparametric Correlated Effects: Applications with Heterogeneous Preferences," IZA Discussion Papers 7741, Institute of Labor Economics (IZA).
- Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
- Antonio F. Galvao & Carlos Lamarche & Luiz Renato Lima, 2013. "Estimation of Censored Quantile Regression for Panel Data With Fixed Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1075-1089, September.
- Jinyong Hahn & Zhipeng Liao, 2021. "Bootstrap Standard Error Estimates and Inference," Econometrica, Econometric Society, vol. 89(4), pages 1963-1977, July.
- Bester, C. Alan & Hansen, Christian, 2009. "A Penalty Function Approach to Bias Reduction in Nonlinear Panel Models with Fixed Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 131-148.
- Kock, Anders Bredahl & Tang, Haihan, 2019. "Uniform Inference In High-Dimensional Dynamic Panel Data Models With Approximately Sparse Fixed Effects," Econometric Theory, Cambridge University Press, vol. 35(2), pages 295-359, April.
- Mary E. Burfisher & Sherman Robinson & Karen Thierfelder, 2001. "The Impact of NAFTA on the United States," Journal of Economic Perspectives, American Economic Association, vol. 15(1), pages 125-144, Winter.
- Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
- Lorenzo Caliendo & Fernando Parro, 2015.
"Estimates of the Trade and Welfare Effects of NAFTA,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 1-44.
- Lorenzo Caliendo & Fernando Parro, 2012. "Estimates of the Trade and Welfare Effects of NAFTA," NBER Working Papers 18508, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024.
"Bootstrap Inference for Panel Data Quantile Regression,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
- Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2021. "Bootstrap inference for panel data quantile regression," Papers 2111.03626, arXiv.org.
- Hartley, Robert Paul & Lamarche, Carlos & Ziliak, James P., 2023. "Bootstrapping quantile correlations with an application for income status across generations," Economics Letters, Elsevier, vol. 228(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2024.
"Bootstrap Inference for Panel Data Quantile Regression,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 628-639, April.
- Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2021. "Bootstrap inference for panel data quantile regression," Papers 2111.03626, arXiv.org.
- Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
- Harding, Matthew & Lamarche, Carlos, 2019.
"A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment,"
Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
- Matthew Harding & Carlos Lamarche, 2018. "A Panel Quantile Approach to Attrition Bias in Big Data: Evidence from a Randomized Experiment," Papers 1808.03364, arXiv.org.
- Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023.
"Machine learning panel data regressions with heavy-tailed dependent data: Theory and application,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data: Theory and Application," Papers 2008.03600, arXiv.org, revised Nov 2021.
- Galvao, Antonio F. & Gu, Jiaying & Volgushev, Stanislav, 2020.
"On the unbiased asymptotic normality of quantile regression with fixed effects,"
Journal of Econometrics, Elsevier, vol. 218(1), pages 178-215.
- Antonio F. Galvao & Jiaying Gu & Stanislav Volgushev, 2018. "On the Unbiased Asymptotic Normality of Quantile Regression with Fixed Effects," Papers 1807.11863, arXiv.org, revised Feb 2020.
- Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024.
"Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
- Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2023. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Papers 2303.13218, arXiv.org.
- Yu, Lu & Gu, Jiaying & Volgushev, Stanislav, 2024. "Spectral clustering with variance information for group structure estimation in panel data," Journal of Econometrics, Elsevier, vol. 241(1).
- Leng, Xuan & Chen, Heng & Wang, Wendun, 2023. "Multi-dimensional latent group structures with heterogeneous distributions," Journal of Econometrics, Elsevier, vol. 233(1), pages 1-21.
- Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
- Gu, Jiaying & Volgushev, Stanislav, 2019. "Panel data quantile regression with grouped fixed effects," Journal of Econometrics, Elsevier, vol. 213(1), pages 68-91.
- Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024.
"Network and panel quantile effects via distribution regression,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Victor Chernozhukov & Iv'an Fern'andez-Val & Martin Weidner, 2018. "Network and Panel Quantile Effects Via Distribution Regression," Papers 1803.08154, arXiv.org, revised Jun 2020.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP21/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2020. "Network and Panel Quantile Effects Via Distribution Regression," CeMMAP working papers CWP27/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP70/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
- Jiaying Gu & Stanislav Volgushev, 2018. "Panel Data Quantile Regression with Grouped Fixed Effects," Papers 1801.05041, arXiv.org, revised Aug 2018.
- Yiren Wang & Liangjun Su & Yichong Zhang, 2022. "Low-rank Panel Quantile Regression: Estimation and Inference," Papers 2210.11062, arXiv.org.
- Zongwu Cai & Meng Shi & Yue Zhao & Wuqing Wu, 2020. "Testing Financial Hierarchy Based on A PDQ-CRE Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202011, University of Kansas, Department of Economics, revised Jul 2020.
- Fernández-Val, Iván & Gao, Wayne Yuan & Liao, Yuan & Vella, Francis, 2022.
"Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes,"
IZA Discussion Papers
15236, Institute of Labor Economics (IZA).
- Ivan Fernandez-Val & Wayne Yuan Gao & Yuan Liao & Francis Vella, 2022. "Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes," Papers 2202.04154, arXiv.org, revised Jan 2023.
- Liang Chen & Yulong Huo, 2019. "A Simple Estimator for Quantile Panel Data Models Using Smoothed Quantile Regressions," Papers 1911.04729, arXiv.org.
- Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
- Jungmo Yoon & Antonio F. Galvao, 2020. "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," Quantitative Economics, Econometric Society, vol. 11(2), pages 579-608, May.
More about this item
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wat:wpaper:22003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sherri Anne Arsenault (email available below). General contact details of provider: https://edirc.repec.org/data/dewatca.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.