A Neural Network Method for Nonlinear Time Series Analysis
Author
Abstract
Suggested Citation
DOI: 10.1515/jtse-2016-0011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Andrew P. Blake & George Kapetanios, 2007.
"Testing for Neglected Nonlinearity in Cointegrating Relationships,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 807-826, November.
- Andrew P. Blake & George Kapetanios, 2004. "Testing for Neglected Nonlinearity in Cointegrating Relationships," Working Papers 508, Queen Mary University of London, School of Economics and Finance.
- Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993.
"Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests,"
Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
- Tom Doan, "undated". "REGWHITENNTEST: RATS procedure to perform White neural network test on regression," Statistical Software Components RTS00183, Boston College Department of Economics.
- Tom Doan, "undated". "REGRESET: RATS procedure to perform Ramsey RESET test on regression," Statistical Software Components RTS00181, Boston College Department of Economics.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Blake, Andrew P. & Kapetanios, George, 2007.
"Testing for ARCH in the presence of nonlinearity of unknown form in the conditional mean,"
Journal of Econometrics, Elsevier, vol. 137(2), pages 472-488, April.
- Andrew P. Blake & George Kapetanios, 2003. "Testing for ARCH in the Presence of Nonlinearity of Unknown Form in the Conditional Mean," Working Papers 496, Queen Mary University of London, School of Economics and Finance.
- Kapetanios, George & Blake, Andrew P., 2010. "Tests Of The Martingale Difference Hypothesis Using Boosting And Rbf Neural Network Approximations," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1363-1397, October.
- Kock, Anders Bredahl & Teräsvirta, Timo, 2014.
"Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009," CREATES Research Papers 2011-28, Department of Economics and Business Economics, Aarhus University.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Andrew P. Blake & George Kapetanios, 2003. "Pure Significance Tests of the Unit Root Hypothesis Against Nonlinear Alternatives," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 253-267, May.
- Anders Bredahl Kock & Timo Teräsvirta, 2016.
"Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Guay, Alain & Guerre, Emmanuel, 2006. "A Data-Driven Nonparametric Specification Test For Dynamic Regression Models," Econometric Theory, Cambridge University Press, vol. 22(4), pages 543-586, August.
- White, Halbert, 2006. "Approximate Nonlinear Forecasting Methods," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 9, pages 459-512, Elsevier.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
- Terasvirta, Timo, 2006.
"Forecasting economic variables with nonlinear models,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457,
Elsevier.
- Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
- Kanazawa, Nobuyuki, 2020.
"Radial basis functions neural networks for nonlinear time series analysis and time-varying effects of supply shocks,"
Journal of Macroeconomics, Elsevier, vol. 64(C).
- KANAZAWA, Nobuyuki & 金澤, 伸幸, 2018. "Radial Basis Functions Neural Networks for Nonlinear Time Series Analysis and Time-Varying Effects of Supply Shocks," Discussion paper series HIAS-E-64, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- George Kapetanios & Andrew P. Blake, 2007. "Testing the Martingale Difference Hypothesis Using Neural Network Approximations," Working Papers 601, Queen Mary University of London, School of Economics and Finance.
- Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
- George Kapetanios & Andrew P. Blake, 2007.
"Testing the Martingale Difference Hypothesis Using Neural Network Approximations,"
Working Papers
601, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios & Andrew P. Blake, 2007. "Testing the Martingale Difference Hypothesis Using Neural Network Approximations," Working Papers 601, Queen Mary University of London, School of Economics and Finance.
- Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
- Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
- Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020.
"Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform,"
Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
- Christophe Croux & Julapa Jagtiani & Tarunsai Korivi & Milos Vulanovic, 2020. "Important Factors Determining Fintech Loan Default: Evidence from the LendingClub Consumer Platform," Working Papers 20-15, Federal Reserve Bank of Philadelphia.
- Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Jens Ludwig & Sendhil Mullainathan, 2021.
"Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System,"
Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
- Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," NBER Working Papers 29267, National Bureau of Economic Research, Inc.
- Halko, Marja-Liisa & Lappalainen, Olli & Sääksvuori, Lauri, 2021. "Do non-choice data reveal economic preferences? Evidence from biometric data and compensation-scheme choice," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 87-104.
- Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
- He, Xue-Zhong & Lin, Shen, 2022. "Reinforcement Learning Equilibrium in Limit Order Markets," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
- Philip Rothman, "undated". "Table of Contents, List of Contributors, and Introduction to NONLINEAR TIME SERIES ANALYSIS OF ECONOMIC AND FINANCIAL DATA, Kluwer Academic Press, edited," Working Papers 9812, East Carolina University, Department of Economics.
More about this item
Keywords
artificial neural networks; radial basis function; data-driven modelling procedures; neglected nonlinearity; nonlinear forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:11:y:2019:i:1:p:18:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.