IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v237y2023i1s0304407623002294.html
   My bibliography  Save this article

Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model

Author

Listed:
  • Fan, Yanqin
  • Han, Fang
  • Park, Hyeonseok

Abstract

This paper develops simple, robust estimation and inference methods for the transition matrix of a high-dimensional semiparametric Gaussian copula vector autoregressive process. Our estimator is based on rank estimators of the large variance and auto-covariance matrices of a transformed latent high-dimensional Gaussian process. We derive rates of convergence of our estimator based on which we develop de-biased inference for Granger causality. Numerical results demonstrate the efficacy of the proposed methods. Although our focus is on the observable process, by the nature of rank estimators, all the methods developed directly apply to the transformed latent process. In technical terms, our analysis relies heavily on newly developed exponential inequalities for (degenerate) U-statistics under α-mixing condition.

Suggested Citation

  • Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
  • Handle: RePEc:eee:econom:v:237:y:2023:i:1:s0304407623002294
    DOI: 10.1016/j.jeconom.2023.105513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623002294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.105513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    2. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    3. Min, Aleksey & Czado, Claudia, 2014. "SCOMDY models based on pair-copula constructions with application to exchange rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 523-535.
    4. Lee, Tae-Hwy & Long, Xiangdong, 2009. "Copula-based multivariate GARCH model with uncorrelated dependent errors," Journal of Econometrics, Elsevier, vol. 150(2), pages 207-218, June.
    5. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    6. Xiaohong Chen & Wei Biao Wu & Yanping Yi, 2009. "Efficient Estimation of Copula-based Semiparametric Markov Models," Cowles Foundation Discussion Papers 1691, Cowles Foundation for Research in Economics, Yale University, revised Mar 2009.
    7. Tianhao Wang & Yingcun Xia, 2015. "Whittle Likelihood Estimation of Nonlinear Autoregressive Models With Moving Average Residuals," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1083-1099, September.
    8. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    9. Rémillard, Bruno & Papageorgiou, Nicolas & Soustra, Frédéric, 2012. "Copula-based semiparametric models for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 30-42.
    10. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    11. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    12. Dehling, Herold & Wendler, Martin, 2010. "Central limit theorem and the bootstrap for U-statistics of strongly mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 126-137, January.
    13. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    14. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    15. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    16. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 125-154.
    17. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    18. Dehling, Herold & Vogel, Daniel & Wendler, Martin & Wied, Dominik, 2017. "Testing For Changes In Kendall’S Tau," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1352-1386, December.
    19. Yanqin Fan & Andrew J. Patton, 2014. "Copulas in Econometrics," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 179-200, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonghang Chen & Jifeng Cao & Xiangfeng Ji, 2024. "Reliability and Unreliability Aspects of Travel Time Analysis on the Stochastic Network Using the Target-Oriented Perspective," Sustainability, MDPI, vol. 16(12), pages 1-22, June.
    2. Christis Katsouris, 2024. "Robust Estimation in Network Vector Autoregression with Nonstationary Regressors," Papers 2401.04050, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    2. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
    3. Xiaohong Chen & Zhijie Xiao & Bo Wang, 2020. "Copula-Based Time Series With Filtered Nonstationarity," Cowles Foundation Discussion Papers 2242, Cowles Foundation for Research in Economics, Yale University.
    4. Fan, Yanqin & Henry, Marc, 2023. "Vector copulas," Journal of Econometrics, Elsevier, vol. 234(1), pages 128-150.
    5. Costanza Naguib & Patrick Gagliardini, 2023. "A Semi-nonparametric Copula Model for Earnings Mobility," Diskussionsschriften dp2302, Universitaet Bern, Departement Volkswirtschaft.
    6. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    7. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    8. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    9. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    10. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    11. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.
    12. Martin Bladt & Alexander J. McNeil, 2020. "Time series copula models using d-vines and v-transforms," Papers 2006.11088, arXiv.org, revised Jul 2021.
    13. Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
    14. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    15. Shi, Peng & Zhao, Zifeng, 2024. "Enhanced pricing and management of bundled insurance risks with dependence-aware prediction using pair copula construction," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    17. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    18. Overbeck Ludger & Schmidt Wolfgang M., 2015. "Multivariate Markov Families of Copulas," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, October.
    19. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    20. Rémillard, Bruno & Papageorgiou, Nicolas & Soustra, Frédéric, 2012. "Copula-based semiparametric models for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 30-42.

    More about this item

    Keywords

    High-dimensional time series; Sparse transition matrix; α-mixing; Latent Gaussian process; De-biasing inference; Kendall’s tau;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:237:y:2023:i:1:s0304407623002294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.