Sparse seasonal and periodic vector autoregressive modeling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2016.09.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Harry L. Hurd & Neil L. Gerr, 1991. "Graphical Methods For Determining The Presence Of Periodic Correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 337-350, July.
- Kock, Anders Bredahl & Callot, Laurent, 2015.
"Oracle inequalities for high dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
- Taylor, James W., 2010. "Reply to the discussion of: Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 658-660, October.
- Fried, Roland & Didelez, Vanessa, 2005. "Latent variable analysis and partial correlation graphs for multivariate time series," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 287-296, July.
- Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
- MArcelo C. Medeiros & Eduardo F.Mendes, 2012.
"Estimating High-Dimensional Time Series Models,"
Textos para discussão
602, Department of Economics PUC-Rio (Brazil).
- Marcelo C. Medeiros & Eduardo F. Mendes, 2012. "Estimating High-Dimensional Time Series Models," CREATES Research Papers 2012-37, Department of Economics and Business Economics, Aarhus University.
- Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
- Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
- Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
- Ghysels,Eric & Osborn,Denise R., 2001.
"The Econometric Analysis of Seasonal Time Series,"
Cambridge Books,
Cambridge University Press, number 9780521565882, September.
- Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521562607, October.
- Song, Song & Bickel, Peter J., 2011.
"Large vector auto regressions,"
SFB 649 Discussion Papers
2011-048, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Song Song & Peter J. Bickel, 2011. "Large Vector Auto Regressions," Papers 1106.3915, arXiv.org.
- Yu-Chun Chen & Ming-Yen Cheng & Hau-Tieng Wu, 2014. "Non-parametric and adaptive modelling of dynamic periodicity and trend with heteroscedastic and dependent errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 651-682, June.
- Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
- Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
- So, Mike K.P. & Chung, Ray S.W., 2014. "Dynamic seasonality in time series," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 212-226.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bouchouia, Mohammed & Portier, François, 2021. "High dimensional regression for regenerative time-series: An application to road traffic modeling," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Jin Zou & Dong Han, 2021. "Yule–Walker Equations Using a Gini Covariance Matrix for the High-Dimensional Heavy-Tailed PVAR Model," Mathematics, MDPI, vol. 9(6), pages 1-15, March.
- Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Audrino, Francesco & Camponovo, Lorenzo, 2013.
"Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models,"
Economics Working Paper Series
1327, University of St. Gallen, School of Economics and Political Science.
- Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Matteo Barigozzi & Christian Brownlees, 2019.
"NETS: Network estimation for time series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
- Matteo Barigozzi & Christian T. Brownlees, 2013. "Nets: Network estimation for time series," Economics Working Papers 1391, Department of Economics and Business, Universitat Pompeu Fabra.
- Matteo Barigozzi & Christian Brownlees, 2013. "Nets: Network Estimation for Time Series," Working Papers 723, Barcelona School of Economics.
- Barigozzi, Matteo & Brownlees, Christian T., 2018. "Nets: network estimation for time series," LSE Research Online Documents on Economics 90493, London School of Economics and Political Science, LSE Library.
- Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
- Matteo Barigozzi & Marc Hallin, 2015.
"Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series,"
Papers
1510.05118, arXiv.org, revised Jul 2016.
- Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Working Papers ECARES ECARES 2015-34, ULB -- Universite Libre de Bruxelles.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Fantazzini, Dean, 2020.
"Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
- Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," MPRA Paper 102315, University Library of Munich, Germany.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2017.
"Adaptive LASSO estimation for ARDL models with GARCH innovations,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 622-637, October.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "Adaptative LASSO estimation for ARDL models with GARCH innovations," Textos para discussão 637, Department of Economics PUC-Rio (Brazil).
- Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
- Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
- Matteo Barigozzi & Marc Hallin, 2017.
"A network analysis of the volatility of high dimensional financial series,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
- Barigozzi, Matteo & Hallin, Marc, 2017. "A network analysis of the volatility of high-dimensionalfinancial series," LSE Research Online Documents on Economics 67456, London School of Economics and Political Science, LSE Library.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
- Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2012.
"Estimating High-Dimensional Time Series Models,"
CREATES Research Papers
2012-37, Department of Economics and Business Economics, Aarhus University.
- MArcelo C. Medeiros & Eduardo F.Mendes, 2012. "Estimating High-Dimensional Time Series Models," Textos para discussão 602, Department of Economics PUC-Rio (Brazil).
- Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019.
"Statistical and economic evaluation of time series models for forecasting arrivals at call centers,"
Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," ETA: Economic Theory and Applications 253725, Fondazione Eni Enrico Mattei (FEEM).
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Working Papers 2017.06, Fondazione Eni Enrico Mattei.
- Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2018. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," Papers 1804.08315, arXiv.org.
- Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," MPRA Paper 76308, University Library of Munich, Germany.
- Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011. "Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria," Departmental Working Papers 2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Hamed Haselimashhadi & Veronica Vinciotti, 2018. "Penalised inference for lagged dependent regression in the presence of autocorrelated residuals," METRON, Springer;Sapienza Università di Roma, vol. 76(1), pages 49-68, April.
- Zachary F. Fisher & Younghoon Kim & Barbara L. Fredrickson & Vladas Pipiras, 2022. "Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 1-29, June.
More about this item
Keywords
Seasonal vector autoregressive (SVAR) model; Periodic vector autoregressive (PVAR) model; Sparsity; Partial spectral coherence (PSC); Adaptive lasso; Variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:106:y:2017:i:c:p:103-126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.