IDEAS home Printed from https://ideas.repec.org/a/spr/jecrev/v75y2024i3d10.1007_s42973-024-00165-6.html
   My bibliography  Save this article

Bandit algorithms for policy learning: methods, implementation, and welfare-performance

Author

Listed:
  • Toru Kitagawa

    (Brown University)

  • Jeff Rowley

    (University College London)

Abstract

Static supervised learning—in which experimental data serves as a training sample for the estimation of an optimal treatment assignment policy—is a commonly assumed framework of policy learning. An arguably more realistic but challenging scenario is a dynamic setting in which the planner performs experimentation and exploitation simultaneously with subjects that arrive sequentially. This paper studies bandit algorithms for learning an optimal individualised treatment assignment policy. Specifically, we study applicability of the EXP4.P (Exponential weighting for Exploration and Exploitation with Experts) algorithm developed by Beygelzimer et al. (Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, pp 19–26, 2011) to policy learning. Assuming that the class of policies has a finite Vapnik–Chervonenkis dimension and that the number of subjects to be allocated is known, we present a high probability welfare-regret bound of the algorithm. To implement the algorithm, we use an incremental enumeration algorithm for hyperplane arrangements. We perform extensive numerical analysis to assess the algorithm’s sensitivity to its tuning parameters and its welfare-regret performance. Further simulation exercises are calibrated to the National Job Training Partnership Act (JTPA) Study sample to determine how the algorithm performs when applied to economic data. Our findings highlight various computational challenges and suggest that the limited welfare gain from the algorithm is due to substantial heterogeneity in causal effects in the JTPA data.

Suggested Citation

  • Toru Kitagawa & Jeff Rowley, 2024. "Bandit algorithms for policy learning: methods, implementation, and welfare-performance," The Japanese Economic Review, Springer, vol. 75(3), pages 407-447, July.
  • Handle: RePEc:spr:jecrev:v:75:y:2024:i:3:d:10.1007_s42973-024-00165-6
    DOI: 10.1007/s42973-024-00165-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42973-024-00165-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42973-024-00165-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    2. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    3. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    4. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    5. Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
    6. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org, revised Jul 2024.
    7. Toru Kitagawa & Aleksey Tetenov, 2021. "Equality-Minded Treatment Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
    8. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    9. Howard S. Bloom & Larry L. Orr & Stephen H. Bell & George Cave & Fred Doolittle & Winston Lin & Johannes M. Bos, 1997. "The Benefits and Costs of JTPA Title II-A Programs: Key Findings from the National Job Training Partnership Act Study," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 549-576.
    10. Yichi Zhang & Eric B. Laber & Marie Davidian & Anastasios A. Tsiatis, 2018. "Interpretable Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1541-1549, October.
    11. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    12. Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
    13. Jiaying Gu & Roger Koenker, 2022. "Nonparametric Maximum Likelihood Methods for Binary Response Models With Random Coefficients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 732-751, April.
    14. Susan Athey & Undral Byambadalai & Vitor Hadad & Sanath Kumar Krishnamurthy & Weiwen Leung & Joseph Jay Williams, 2022. "Contextual Bandits in a Survey Experiment on Charitable Giving: Within-Experiment Outcomes versus Policy Learning," Papers 2211.12004, arXiv.org.
    15. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    16. Kaito Ariu & Masahiro Kato & Junpei Komiyama & Kenichiro McAlinn & Chao Qin, 2021. "Policy Choice and Best Arm Identification: Asymptotic Analysis of Exploration Sampling," Papers 2109.08229, arXiv.org, revised Nov 2021.
    17. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    18. Jiafeng Chen, 2023. "Synthetic Control as Online Linear Regression," Econometrica, Econometric Society, vol. 91(2), pages 465-491, March.
    19. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    2. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    4. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    5. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Dec 2024.
    6. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    7. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    8. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    9. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    10. Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
    11. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
    13. Kirill Ponomarev & Vira Semenova, 2024. "On the Lower Confidence Band for the Optimal Welfare," Papers 2410.07443, arXiv.org, revised Oct 2024.
    14. Toru Kitagawa & Hugo Lopez & Jeff Rowley, 2022. "Stochastic Treatment Choice with Empirical Welfare Updating," Papers 2211.01537, arXiv.org, revised Feb 2023.
    15. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    16. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    17. Liyang Sun, 2021. "Empirical Welfare Maximization with Constraints," Papers 2103.15298, arXiv.org, revised Sep 2024.
    18. Toru Kitagawa & Aleksey Tetenov, 2021. "Equality-Minded Treatment Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
    19. Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
    20. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecrev:v:75:y:2024:i:3:d:10.1007_s42973-024-00165-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.