Technological Shocks and Stock Market Volatility Over a Century: A GARCH-MIDAS Approach
Author
Abstract
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
References listed on IDEAS
- Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016.
"Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching,"
International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
- Ben Nasr, Adnen & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," FinMaP-Working Papers 2, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Nasr, Adnen Ben & Lux, Thomas & Ajm, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the volatility of the dow jones islamic stock market index: Long memory vs. regime switching," Economics Working Papers 2014-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Adnen Ben Nasr & Thomas Lux & Ahdi N. Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 201412, University of Pretoria, Department of Economics.
- Adnen Ben Nasr & Thomas Lux & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Forecasting the Volatility of the Dow Jones Islamic Stock Market Index: Long Memory vs. Regime Switching," Working Papers 2014-236, Department of Research, Ipag Business School.
- Das, Sonali & Demirer, Riza & Gupta, Rangan & Mangisa, Siphumlile, 2019.
"The effect of global crises on stock market correlations: Evidence from scalar regressions via functional data analysis,"
Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 132-147.
- Sonali Das & Riza Demirer & Rangan Gupta & Siphumlile Mangisa, 2019. "The Effect of Global Crises on Stock Market Correlations: Evidence from Scalar Regressions via Functional Data Analysis," Working Papers 201908, University of Pretoria, Department of Economics.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Xiaoquan Jiang, 2010. "Return dispersion and expected returns," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 24(2), pages 107-135, June.
- Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022.
"A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2019. "A Moving Average Heterogeneous Autoregressive Model for Forecasting the Realized Volatility of the US Stock Market: Evidence from Over a Century of Data," Working Papers 201978, University of Pretoria, Department of Economics.
- Ufuk Akcigit & William R. Kerr, 2018.
"Growth through Heterogeneous Innovations,"
Journal of Political Economy, University of Chicago Press, vol. 126(4), pages 1374-1443.
- Ufuk Akcigit & William R. Kerr, 2010. "Growth Through Heterogeneous Innovations," NBER Working Papers 16443, National Bureau of Economic Research, Inc.
- Akcigit, Ufuk & Kerr, William, 2016. "Growth through Heterogeneous Innovations," CEPR Discussion Papers 11660, C.E.P.R. Discussion Papers.
- Akcigit, Ufuk & Kerr, William R., 2013. "Growth through heterogeneous innovations," Bank of Finland Research Discussion Papers 28/2013, Bank of Finland.
- Ufuk Akcigit & William R. Kerr, 2010. "Growth through Heterogeneous Innovations," PIER Working Paper Archive 10-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Ufuk Akcigit & William R. Kerr, 2012. "Growth Through Heterogeneous Innovations," Working Papers 12-08, Center for Economic Studies, U.S. Census Bureau.
- Aghion, Philippe & Howitt, Peter, 1992.
"A Model of Growth through Creative Destruction,"
Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
- Aghion, P. & Howitt, P., 1989. "A Model Of Growth Through Creative Destruction," University of Western Ontario, Departmental Research Report Series 8904, University of Western Ontario, Department of Economics.
- Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth Through Creative Destruction," Scholarly Articles 12490578, Harvard University Department of Economics.
- Aghion, P. & Howitt, P., 1990. "A Model Of Growth Through Creative Destruction," DELTA Working Papers 90-12, DELTA (Ecole normale supérieure).
- Philippe Aghion & Peter Howitt, 1990. "A Model of Growth Through Creative Destruction," NBER Working Papers 3223, National Bureau of Economic Research, Inc.
- Aghion, P. & Howitt, P., 1989. "A Model Of Growth Through Creative Destruction," Working papers 527, Massachusetts Institute of Technology (MIT), Department of Economics.
- José Rangel & Robert Engle, 2012.
"The Factor–Spline–GARCH Model for High and Low Frequency Correlations,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 109-124.
- José Gonzalo Rangel & Robert F. Engle, 2011. "The Factor--Spline--GARCH Model for High and Low Frequency Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 109-124, May.
- Rangel José Gonzalo & Engle Robert F., 2009. "The Factor-Spline-GARCH Model for High and Low Frequency Correlations," Working Papers 2009-03, Banco de México.
- Leonid Kogan & Dimitris Papanikolaou, 2014.
"Growth Opportunities, Technology Shocks, and Asset Prices,"
Journal of Finance, American Finance Association, vol. 69(2), pages 675-718, April.
- Leonid Kogan & Dimitris Papanikolaou, 2012. "Growth Opportunities, Technology Shocks, and Asset Prices," NBER Working Papers 17795, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Hirshleifer, David & Hsu, Po-Hsuan & Li, Dongmei, 2013. "Innovative efficiency and stock returns," Journal of Financial Economics, Elsevier, vol. 107(3), pages 632-654.
- Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2017. "Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 140-158, January.
- Jonathan B. Berk & Richard C. Green & Vasant Naik, 1999.
"Optimal Investment, Growth Options, and Security Returns,"
Journal of Finance, American Finance Association, vol. 54(5), pages 1553-1607, October.
- Jonathan Berk & Richard C. Green & Vasant Naik, "undated". "Optimal Investment, Growth Options and Security Returns," GSIA Working Papers 64, Carnegie Mellon University, Tepper School of Business.
- Jonathan Berk & Richard C. Green & Vasant Naik, 1998. "Optimal Investment, Growth Options, and Security Returns," NBER Working Papers 6627, National Bureau of Economic Research, Inc.
- Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
- Tor Jakob Klette & Samuel Kortum, 2004.
"Innovating Firms and Aggregate Innovation,"
Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 986-1018, October.
- Tor Jakob Klette & Samuel Kortum, 2002. "Innovating Firms and Aggregate Innovation," NBER Working Papers 8819, National Bureau of Economic Research, Inc.
- Klette, Tor Jakob & Kortum, Samuel S, 2002. "Innovating Firms and Aggregate Innovation," CEPR Discussion Papers 3248, C.E.P.R. Discussion Papers.
- Jakob Klette & Samuel Kortum, 2002. "Innovating firms and aggregate innovation," Staff Report 300, Federal Reserve Bank of Minneapolis.
- Klette, Tor Jakob & Kortum, Samuel, 2002. "Innovating Firms and Aggregate Innovation," Memorandum 02/2002, Oslo University, Department of Economics.
- Nicolae Gârleanu & Stavros Panageas & Jianfeng Yu, 2012.
"Technological Growth and Asset Pricing,"
Journal of Finance, American Finance Association, vol. 67(4), pages 1265-1292, August.
- Nicolae B. Gârleanu & Stavros Panageas & Jianfeng Yu, 2009. "Technological Growth and Asset Pricing," NBER Working Papers 15340, National Bureau of Economic Research, Inc.
- Ron Giammarino & Murray Carlson & Adlai Fisher, 2004. "Corporate Investment and Asset Price Dynamics: Implications for Post-SEO Performance," 2004 Meeting Papers 812, Society for Economic Dynamics.
- Rasmus Lentz & Dale T. Mortensen, 2008.
"An Empirical Model of Growth Through Product Innovation,"
Econometrica, Econometric Society, vol. 76(6), pages 1317-1373, November.
- Dale T. Mortensen & Rasmus Lentz, 2005. "An Empirical Model of Growth Through Product Innovation," 2005 Meeting Papers 910, Society for Economic Dynamics.
- Rasmus Lentz & Dale T. Mortensen, 2005. "An Empirical Model of Growth Through Product Innovation," CAM Working Papers 2005-13, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
- Rasmus Lentz & Dale T. Mortensen, 2005. "An Empirical Model of Growth Through Product Innovation," Boston University - Department of Economics - Working Papers Series WP2005-004, Boston University - Department of Economics.
- Lentz, Rasmus & Mortensen, Dale T., 2005. "An Empirical Model of Growth Through Product Innovation," IZA Discussion Papers 1685, Institute of Labor Economics (IZA).
- Rasmus Lentz & Dale T. Mortensen, 2005. "An Empirical Model of Growth Through Product Innovation," NBER Working Papers 11546, National Bureau of Economic Research, Inc.
- Mark Doms & Eric J. Bartelsman, 2000.
"Understanding Productivity: Lessons from Longitudinal Microdata,"
Journal of Economic Literature, American Economic Association, vol. 38(3), pages 569-594, September.
- Eric J. Bartelsman & Mark Doms, 2000. "Understanding productivity: lessons from longitudinal microdata," Finance and Economics Discussion Series 2000-19, Board of Governors of the Federal Reserve System (U.S.).
- Ruipeng Liu & Rangan Gupta, 2022.
"Investors’ Uncertainty and Forecasting Stock Market Volatility,"
Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(3), pages 327-337, July.
- Ruipeng Liu & Rangan Gupta, 2020. "Investors' Uncertainty and Forecasting Stock Market Volatility," Working Papers 202090, University of Pretoria, Department of Economics.
- Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014.
"Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model,"
Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
- Adnen Ben Nasr & Ahdi N. Ajmi & Rangan Gupta, 2013. "Modeling the Volatility of the Dow Jones Islamic Market World Index Using a Fractionally Integrated Time Varying GARCH (FITVGARCH) Model," Working Papers 201357, University of Pretoria, Department of Economics.
- Shiller, Robert J, 1981.
"Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?,"
American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
- Robert J. Shiller, 1980. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," NBER Working Papers 0456, National Bureau of Economic Research, Inc.
- David Hirshleifer & Po-Hsuan Hsu & Dongmei Li, 2018.
"Innovative Originality, Profitability, and Stock Returns,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2553-2605.
- David Hirshleifer & Po-Hsuan Hsu & Dongmei Li, 2017. "Innovative Originality, Profitability, and Stock Returns," NBER Working Papers 23432, National Bureau of Economic Research, Inc.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Lucia Foster & John C. Haltiwanger & C. J. Krizan, 2001.
"Aggregate Productivity Growth: Lessons from Microeconomic Evidence,"
NBER Chapters, in: New Developments in Productivity Analysis, pages 303-372,
National Bureau of Economic Research, Inc.
- John Haltiwanger & C J Krizan & Lucia Foster, 1998. "Aggregate Productivity Growth: Lessons From Microeconomic Evidence," Working Papers 98-12, Center for Economic Studies, U.S. Census Bureau.
- Lucia Foster & John Haltiwanger & C.J. Krizan, 1998. "Aggregate Productivity Growth: Lessons from Microeconomic Evidence," NBER Working Papers 6803, National Bureau of Economic Research, Inc.
- Bernanke, Ben S, 1983.
"Nonmonetary Effects of the Financial Crisis in Propagation of the Great Depression,"
American Economic Review, American Economic Association, vol. 73(3), pages 257-276, June.
- Ben S. Bernanke, 1983. "Non-Monetary Effects of the Financial Crisis in the Propagation of the Great Depression," NBER Working Papers 1054, National Bureau of Economic Research, Inc.
- Sharma, Susan Sunila & Narayan, Paresh Kumar, 2022. "Technology shocks and stock returns: A long-term perspective," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 67-83.
- repec:bla:jfinan:v:59:y:2004:i:6:p:2577-2603 is not listed on IDEAS
- Christian Conrad & Karin Loch, 2015.
"Anticipating Long‐Term Stock Market Volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1090-1114, November.
- Conrad, Christian & Loch, Karin, 2012. "Anticipating Long-Term Stock Market Volatility," Working Papers 0535, University of Heidelberg, Department of Economics.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Luboš Pástor & Pietro Veronesi, 2009.
"Technological Revolutions and Stock Prices,"
American Economic Review, American Economic Association, vol. 99(4), pages 1451-1483, September.
- Lubos Pastor & Pietro Veronesi, 2005. "Technological Revolutions and Stock Prices," NBER Working Papers 11876, National Bureau of Economic Research, Inc.
- Veronesi, Pietro & Pástor, Luboš, 2005. "Technological Revolutions and Stock Prices," CEPR Discussion Papers 5428, C.E.P.R. Discussion Papers.
- Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
- Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
- Howard Kung & Lukas Schmid, 2015. "Innovation, Growth, and Asset Prices," Journal of Finance, American Finance Association, vol. 70(3), pages 1001-1037, June.
- Zhanhui Chen & Ralitsa Petkova, 2012. "Does Idiosyncratic Volatility Proxy for Risk Exposure?," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2745-2787.
- Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
- Dimitris Papanikolaou, 2011. "Investment Shocks and Asset Prices," Journal of Political Economy, University of Chicago Press, vol. 119(4), pages 639-685.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Hsu, Po-Hsuan, 2009. "Technological innovations and aggregate risk premiums," Journal of Financial Economics, Elsevier, vol. 94(2), pages 264-279, November.
- Hsu, Po-Hsuan & Huang, Dayong, 2010. "Technology prospects and the cross-section of stock returns," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 39-53, January.
- Daron Acemoglu & Ufuk Akcigit & Murat Alp Celik, 2022. "Radical and Incremental Innovation: The Roles of Firms, Managers, and Innovators," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 199-249, July.
- Charles Cao & Timothy Simin & Jing Zhao, 2008. "Can Growth Options Explain the Trend in Idiosyncratic Risk?," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2599-2633, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arash Sioofy Khoojine & Ziyun Feng & Mahboubeh Shadabfar & Negar Sioofy Khoojine, 2023. "Analyzing volatility patterns in the Chinese stock market using partial mutual information-based distances," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-21, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ruipeng Liu & Rangan Gupta & Elie Bouri, 2021. "Conventional and Unconventional Monetary Policy Rate Uncertainty and Stock Market Volatility: A Forecasting Perspective," Working Papers 202178, University of Pretoria, Department of Economics.
- Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023.
"Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
- Afees A. Salisu & Rangan Gupta & Elie Bouri, 2022. "Testing the Forecasting Power of Global Economic Conditions for the Volatility of International REITs using a GARCH-MIDAS Approach," Working Papers 202211, University of Pretoria, Department of Economics.
- Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
- Riza Demirer & Rangan Gupta & He Li & Yu You, 2021. "Financial Vulnerability and Volatility in Emerging Stock Markets: Evidence from GARCH-MIDAS Models," Working Papers 202112, University of Pretoria, Department of Economics.
- Rangan Gupta & Yuvana Jaichand & Christian Pierdzioch & Reneé van Eyden, 2023.
"Realized Stock-Market Volatility of the United States and the Presidential Approval Rating,"
Mathematics, MDPI, vol. 11(13), pages 1-27, July.
- Rangan Gupta & Yuvana Jaichand & Christian Pierdzioch & Renee van Eyden, 2023. "Realized Stock-Market Volatility of the United States and the Presidential Approval Rating," Working Papers 202311, University of Pretoria, Department of Economics.
- Ward, Colin, 2020. "Is the IT revolution over? An asset pricing view," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 283-316.
- Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2023.
"Investor Confidence and Forecastability of US Stock Market Realized Volatility: Evidence from Machine Learning,"
Journal of Behavioral Finance, Taylor & Francis Journals, vol. 24(1), pages 111-122, January.
- Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2021. "Investor Confidence and Forecastability of US Stock Market Realized Volatility : Evidence from Machine Learning," Working Papers 202118, University of Pretoria, Department of Economics.
- Afees A. Salisu & Wenting Liao & Rangan Gupta & Oguzhan Cepni, 2023. "Economic Conditions and Predictability of US Stock Returns Volatility: Local Factor versus National Factor in a GARCH-MIDAS Model," Working Papers 202323, University of Pretoria, Department of Economics.
- Afees A. Salisu & Rangan Gupta & Oguzhan Cepni & Petre Caraiani, 2024.
"Oil shocks and state-level stock market volatility of the United States: a GARCH-MIDAS approach,"
Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1473-1510, November.
- Afees A. Salisu & Rangan Gupta & Oguzhan Cepni & Petre Caraiani, 2023. "Oil Shocks and State-Level Stock Market Volatility of the United States: A GARCH-MIDAS Approach," Working Papers 202327, University of Pretoria, Department of Economics.
- Salisu, Afees A. & Gupta, Rangan & Demirer, Riza, 2022.
"Global financial cycle and the predictability of oil market volatility: Evidence from a GARCH-MIDAS model,"
Energy Economics, Elsevier, vol. 108(C).
- Afees A. Salisu & Rangan Gupta & Riza Demirer, 2021. "Global Financial Cycle and the Predictability of Oil Market Volatility: Evidence from a GARCH-MIDAS Model," Working Papers 202121, University of Pretoria, Department of Economics.
- Sharma, Susan Sunila & Narayan, Paresh Kumar, 2022. "Technology shocks and stock returns: A long-term perspective," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 67-83.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024.
"Business applications and state‐level stock market realized volatility: A forecasting experiment,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Business Applications and State-Level Stock Market Realized Volatility: A Forecasting Experiment," Working Papers 202247, University of Pretoria, Department of Economics.
- Salisu, Afees A. & Ogbonna, Ahamuefula E. & Gupta, Rangan & Bouri, Elie, 2024.
"Energy-related uncertainty and international stock market volatility,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 280-293.
- Afees A. Salisu & Ahamuefula E. Ogbonna & Rangan Gupta & Elie Bouri, 2023. "Energy-Related Uncertainty and International Stock Market Volatility," Working Papers 202336, University of Pretoria, Department of Economics.
- Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2020. "Forecasting Oil Volatility Using a GARCH-MIDAS Approach: The Role of Global Economic Conditions," Working Papers 202051, University of Pretoria, Department of Economics.
- Oguzhan Cepni & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2024. "Political Geography and Stock Market Volatility: The Role of Political Alignment across Sentiment Regimes," Working Papers 202414, University of Pretoria, Department of Economics.
- Garlappi, Lorenzo & Song, Zhongzhi, 2017. "Capital utilization, market power, and the pricing of investment shocks," Journal of Financial Economics, Elsevier, vol. 126(3), pages 447-470.
- Segal, Gill, 2019. "A tale of two volatilities: Sectoral uncertainty, growth, and asset prices," Journal of Financial Economics, Elsevier, vol. 134(1), pages 110-140.
- Po-Hsuan Hsu & Hsiao-Hui Lee & Tong Zhou, 2022. "Patent Thickets, Stock Returns, and Conditional CAPM," Management Science, INFORMS, vol. 68(11), pages 8343-8367, November.
- Afees A. Salisu & Riza Demirer & Rangan Gupta, 2023.
"Policy uncertainty and stock market volatility revisited: The predictive role of signal quality,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2307-2321, December.
- Afees A. Salisu & Riza Demirer & Rangan Gupta, 2022. "Policy Uncertainty and Stock Market Volatility Revisited: The Predictive Role of Signal Quality," Working Papers 202232, University of Pretoria, Department of Economics.
- Li, Xiaogang, 2020. "Innovation, market valuations, policy uncertainty and trade: Theory and evidence," ISU General Staff Papers 202001010800009179, Iowa State University, Department of Economics.
More about this item
Keywords
Patents; Technology shocks; Stock market volatility; Forecasting;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FDG-2023-05-15 (Financial Development and Growth)
- NEP-FMK-2023-05-15 (Financial Markets)
- NEP-HIS-2023-05-15 (Business, Economic and Financial History)
- NEP-RMG-2023-05-15 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.