IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2014-15.html
   My bibliography  Save this paper

Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence

Author

Listed:
  • Jia Chen
  • Jiti Gao

Abstract

In this paper, we consider a model selection issue in semiparametric panel data models with fixed effects. The modelling framework under investigation can accommodate both nonlinear deterministic trends and cross-sectional dependence. And we consider the so-called "large panels" where both the time series and cross sectional sizes are very large. A penalised profile least squares method with first-stage local linear smoothing is developed to select the significant covariates and estimate the regression coefficients simultaneously. The convergence rate and the oracle property of the resulting semiparametric estimator are established by the joint limit approach. The developed semiparametric model selection methodology is illustrated by two Monte-Carlo simulation studies, where we compare the performance in model selection and estimation of three penalties, i.e., the least absolute shrinkage and selection operator (LASSO), the smoothly clipped absolute deviation (SCAD), and the minimax concave penalty (MCP).

Suggested Citation

  • Jia Chen & Jiti Gao, 2014. "Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 15/14, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2014-15
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp15-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kock, Anders Bredahl, 2013. "Oracle Efficient Variable Selection In Random And Fixed Effects Panel Data Models," Econometric Theory, Cambridge University Press, vol. 29(1), pages 115-152, February.
    2. Cai, Zongwu & Li, Qi, 2008. "Nonparametric Estimation Of Varying Coefficient Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1321-1342, October.
    3. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "Semiparametric trending panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
    6. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    7. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    8. Vidar Hjellvik & Rong Chen & Dag Tjøstheim, 2004. "Nonparametric Estimation and Testing in Panels of Intercorrelated Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 831-872, November.
    9. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    10. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, September.
    11. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    12. Fan, Yali & Qin, Guoyou & Zhu, Zhongyi, 2012. "Variable selection in robust regression models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 156-167.
    13. Jia Chen & Jiti Gao & Degui Li, 2009. "A New Diagnostic Test for Cross-Section Independence in Nonparametric Panel Data Model," School of Economics and Public Policy Working Papers 2009-16, University of Adelaide, School of Economics and Public Policy.
    14. Jiti Gao & Kim Hawthorne, 2006. "Semiparametric estimation and testing of the trend of temperature series," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 332-355, July.
    15. Degui Li & Jia Chen & Jiti Gao, 2011. "Non‐parametric time‐varying coefficient panel data models with fixed effects," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 387-408, October.
    16. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    17. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Partially Linear Single-Index Panel Data Models With Fixed Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 315-330, July.
    18. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    19. Robinson, Peter M., 2012. "Nonparametric trending regression with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 4-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Chen & Degui Li & Jiti Gao, 2013. "Non- and Semi-Parametric Panel Data Models: A Selective Review," Monash Econometrics and Business Statistics Working Papers 18/13, Monash University, Department of Econometrics and Business Statistics.
    2. Isabel Casas & Jiti Gao & Shangyu Xie, 2018. "Modelling Time-Varying Income Elasticities of Health Care Expenditure for the OECD," CREATES Research Papers 2018-29, Department of Economics and Business Economics, Aarhus University.
    3. Boneva, Lena & Linton, Oliver & Vogt, Michael, 2015. "A semiparametric model for heterogeneous panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 327-345.
    4. Lena Boneva (Körber) & Oliver Linton & Michael Vogt, 2013. "A semiparametric model for heterogeneous panel data with fixed effects," CeMMAP working papers 02/13, Institute for Fiscal Studies.
    5. Badi H. Baltagi & Georges Bresson & Jean-Michel Etienne, 2020. "Growth Empirics: a Bayesian Semiparametric Model With Random Coefficients for a Panel of OECD Countries," Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 217-253, Emerald Group Publishing Limited.
    6. Bang-Qiang He & Xing-Jian Hong & Guo-Liang Fan, 2020. "Penalized empirical likelihood for partially linear errors-in-variables panel data models with fixed effects," Statistical Papers, Springer, vol. 61(6), pages 2351-2381, December.
    7. Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.
    8. Lee, Yoon-Jin, 2014. "Testing a linear dynamic panel data model against nonlinear alternatives," Journal of Econometrics, Elsevier, vol. 178(P1), pages 146-166.
    9. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "Semiparametric trending panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 171(1), pages 71-85.
    10. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Partially Linear Single-Index Panel Data Models With Fixed Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 315-330, July.
    11. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 928-955, November.
    12. Chen, Bin & Huang, Liquan, 2018. "Nonparametric testing for smooth structural changes in panel data models," Journal of Econometrics, Elsevier, vol. 202(2), pages 245-267.
    13. Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
    14. Lee, Jungyoon & Robinson, Peter, 2015. "Panel nonparametric regression with fixed effects," LSE Research Online Documents on Economics 61431, London School of Economics and Political Science, LSE Library.
    15. Hua Liu & Youquan Pei & Qunfang Xu, 2020. "Estimation for varying coefficient panel data model with cross-sectional dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 377-410, April.
    16. Lee, Jungyoon & Robinson, Peter M., 2015. "Panel nonparametric regression with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 346-362.
    17. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    18. Chaohua Dong & Jiti Gao & Bin Peng, 2018. "Varying-coefficient panel data models with partially observed factor structure," Monash Econometrics and Business Statistics Working Papers 1/18, Monash University, Department of Econometrics and Business Statistics.
    19. Fei Liu & Jiti Gao & Yanrong Yang, 2019. "Nonparametric Estimation in Panel Data Models with Heterogeneity and Time Varyingness," Monash Econometrics and Business Statistics Working Papers 24/19, Monash University, Department of Econometrics and Business Statistics.
    20. Phillips, Peter C.B. & Wang, Ying, 2022. "Functional coefficient panel modeling with communal smoothing covariates," Journal of Econometrics, Elsevier, vol. 227(2), pages 371-407.

    More about this item

    Keywords

    Cross-sectional dependence; fixed effects; large panel; local linear fitting; penalty function; profile likelihood; semiparametric regression.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2014-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.