IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1664.html
   My bibliography  Save this paper

Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case

Author

Abstract

We propose a Kronecker product structure for large covariance or correlation matrices. One feature of this model is that it scales logarithmically with dimension in the sense that the number of free parameters increases logarithmically with the dimension of the matrix. We propose an estimation method of the parameters based on a log-linear property of the structure, and also a quasi-maximum likelihood estimation (QMLE) method. We establish the rate of convergence of the estimated parameters when the size of the matrix diverges. We also establish a central limit theorem (CLT) for our method. We derive the asymptotic distributions of the estimators of the parameters of the spectral distribution of the Kronecker product correlation matrix, of the extreme logarithmic eigenvalues of this matrix, and of the variance of the minimum variance portfolio formed using this matrix. We also develop tools of inference including a test for over-identification. We apply our methods to portfolio choice for S&P500 daily returns and compare with sample covariance-based methods and with the recent Fan, Liao, and Mincheva (2013) method.

Suggested Citation

  • Hafner, C. M. & Linton, O., 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," Cambridge Working Papers in Economics 1664, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1664
    Note: obl20
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1664.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    2. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    5. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    6. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    7. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    8. Magnus, Jan R. & Neudecker, H., 1986. "Symmetry, 0-1 Matrices and Jacobians: A Review," Econometric Theory, Cambridge University Press, vol. 2(2), pages 157-190, August.
    9. Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
    10. M. Browne & A. Shapiro, 1991. "Invariance of covariance structures under groups of transformations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 38(1), pages 345-355, December.
    11. Saikkonen, Pentti & Lütkepohl, HELMUT, 1996. "Infinite-Order Cointegrated Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(5), pages 814-844, December.
    12. Linton, Oliver & McCrorie, J. Roderick, 1995. "Differentiation of an Exponential Matrix Function," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1182-1185, October.
    13. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    14. Amemiya, Takeshi, 1983. "Partially generalized least squares and two-stage least squares estimators," Journal of Econometrics, Elsevier, vol. 23(2), pages 275-283, October.
    15. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    16. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    17. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    18. Chenlei Leng & Cheng Yong Tang, 2012. "Sparse Matrix Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1187-1200, September.
    19. Gerard, David & Hoff, Peter, 2015. "Equivariant minimax dominators of the MLE in the array normal model," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 32-49.
    20. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    21. Anders Bredahl Kock & Haihan Tang, 2014. "Inference in High-dimensional Dynamic Panel Data Models," CREATES Research Papers 2014-58, Department of Economics and Business Economics, Aarhus University.
    22. Ohlson, Martin & Rauf Ahmad, M. & von Rosen, Dietrich, 2013. "The multilinear normal distribution: Introduction and some basic properties," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 37-47.
    23. Yang Ning & Han Liu, 2013. "High-dimensional semiparametric bigraphical models," Biometrika, Biometrika Trust, vol. 100(3), pages 655-670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers 52/16, Institute for Fiscal Studies.
    2. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    3. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a Multiplicative Covariance Structure," CeMMAP working papers CWP23/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a Multiplicative Covariance Structure," CeMMAP working papers 23/16, Institute for Fiscal Studies.
    5. Linton, O. & Tang, H., 2020. "Estimation of the Kronecker Covariance Model by Quadratic Form," Cambridge Working Papers in Economics 2050, Faculty of Economics, University of Cambridge.
    6. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    7. Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024. "Inferential theory for generalized dynamic factor models," Journal of Econometrics, Elsevier, vol. 239(2).
    8. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    9. Fan, Jianqing & Kim, Donggyu, 2019. "Structured volatility matrix estimation for non-synchronized high-frequency financial data," Journal of Econometrics, Elsevier, vol. 209(1), pages 61-78.
    10. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    11. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    12. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    13. Li, Kunpeng & Li, Qi & Lu, Lina, 2018. "Quasi maximum likelihood analysis of high dimensional constrained factor models," Journal of Econometrics, Elsevier, vol. 206(2), pages 574-612.
    14. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    15. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    16. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    17. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    18. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    19. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    20. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.

    More about this item

    Keywords

    Correlation Matrix; Kronecker Product; Matrix Logarithm; Multiarray data; Multi-trai Multi method; Portfolio Choice; Sparsity;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.