IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v242y2024i2s0304407624001556.html
   My bibliography  Save this article

On LASSO for high dimensional predictive regression

Author

Listed:
  • Mei, Ziwei
  • Shi, Zhentao

Abstract

This paper examines LASSO, a widely-used L1-penalized regression method, in high dimensional linear predictive regressions, particularly when the number of potential predictors exceeds the sample size and numerous unit root regressors are present. The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix. We present new probabilistic bounds for these components, suggesting that LASSO’s rates of convergence are different from those typically observed in cross-sectional cases. When applied to a mixture of stationary, nonstationary, and cointegrated predictors, LASSO maintains its asymptotic guarantee if predictors are scale-standardized. Leveraging machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate, as evidenced by its application to the FRED-MD database.

Suggested Citation

  • Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
  • Handle: RePEc:eee:econom:v:242:y:2024:i:2:s0304407624001556
    DOI: 10.1016/j.jeconom.2024.105809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624001556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "On LASSO Inference for High Dimensional Predictive Regression," Papers 2409.10030, arXiv.org.

    More about this item

    Keywords

    Cointegration; Forecast; Macroeconomics; Time series; Unit root;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:242:y:2024:i:2:s0304407624001556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.