IDEAS home Printed from https://ideas.repec.org/h/eee/ecochp/7a-1.html
   My bibliography  Save this book chapter

Generalized instrumental variable models, methods, and applications

In: Handbook of Econometrics

Author

Listed:
  • Chesher, Andrew
  • Rosen, Adam M.

Abstract

This chapter sets out the extension of the scope of the classical IV model to cases in which unobserved variables are set-valued functions of observed variables. The resulting Generalized IV (GIV) models can be used when outcomes are discrete while unobserved variables are continuous, when there are rich specifications of heterogeneity as in random coefficient models, and when there are inequality restrictions constraining observed outcomes and unobserved variables. There are many other applications and classical IV models arise as a special case. The chapter provides characterizations of the identified sets delivered by GIV models. It gives details of the application of GIV analysis to models with an interval censored endogenous variable and to binary outcome models – for example probit models – with endogenous explanatory variables. It illustrates how the identified sets delivered by GIV models can be represented by moment inequality characterizations that have been the focus of recently developed methods for inference. An empirical application to a binary outcome model of female labor force participation is worked through in detail.

Suggested Citation

  • Chesher, Andrew & Rosen, Adam M., 2020. "Generalized instrumental variable models, methods, and applications," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 1-110, Elsevier.
  • Handle: RePEc:eee:ecochp:7a-1
    DOI: 10.1016/bs.hoe.2019.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1573441219300017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/bs.hoe.2019.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Instrumental variables; structural econometrics; endogeneity; excess heterogeneity; partial identification; moment inequalities; random sets; incomplete models; interval censoring; discrete outcomes;
    All these keywords.

    JEL classification:

    • C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecochp:7a-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.