IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20170032.html
   My bibliography  Save this paper

Inference in high-dimensional linear regression models

Author

Listed:
  • Tom Boot

    (University of Groningen, The Netherlands)

  • Didier Nibbering

    (Erasmus University Rotterdam, The Netherlands)

Abstract

We introduce an asymptotically unbiased estimator for the full high-dimensional parameter vector in linear regression models where the number of variables exceeds the number of available observations. The estimator is accompanied by a closed-form expression for the covariance matrix of the estimates that is free of tuning parameters. This enables the construction of confidence intervals that are valid uniformly over the parameter vector. Estimates are obtained by using a scaled Moore-Penrose pseudoinverse as an approximate inverse of the singular empirical covariance matrix of the regressors. The approximation induces a bias, which is then corrected for using the lasso. Regularization of the pseudoinverse is shown to yield narrower confidence intervals under a suitable choice of the regularization parameter. The methods are illustrated in Monte Carlo experiments and in an empirical example where gross domestic product is explained by a large number of macroeconomic and financial indicators.

Suggested Citation

  • Tom Boot & Didier Nibbering, 2017. "Inference in high-dimensional linear regression models," Tinbergen Institute Discussion Papers 17-032/III, Tinbergen Institute, revised 05 Jul 2017.
  • Handle: RePEc:tin:wpaper:20170032
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/17032.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    2. Barro, Robert J. & Lee, Jong-Wha, 1993. "International comparisons of educational attainment," Journal of Monetary Economics, Elsevier, vol. 32(3), pages 363-394, December.
    3. Chikuse, Yasuko, 1990. "The matrix angular central Gaussian distribution," Journal of Multivariate Analysis, Elsevier, vol. 33(2), pages 265-274, May.
    4. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
    5. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    7. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    8. Sala-i-Martin, Xavier, 1997. "I Just Ran Two Million Regressions," American Economic Review, American Economic Association, vol. 87(2), pages 178-183, May.
    9. Tingni Sun & Cun-Hui Zhang, 2012. "Scaled sparse linear regression," Biometrika, Biometrika Trust, vol. 99(4), pages 879-898.
    10. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    11. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    12. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Zhou & Seunghyun Min, 2017. "Uncertainty quantification under group sparsity," Biometrika, Biometrika Trust, vol. 104(3), pages 613-632.
    2. Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
    3. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    4. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    5. Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    8. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    9. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    10. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    12. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    13. Gary Koop & Simon M. Potter & Rodney W. Strachan, 2008. "Re-Examining the Consumption-Wealth Relationship: The Role of Model Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2-3), pages 341-367, March.
    14. Gilles Dufrenot & Valerie Mignon & Charalambos Tsangarides, 2010. "The trade-growth nexus in the developing countries: a quantile regression approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(4), pages 731-761, December.
    15. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    16. Schneider Ulrike & Wagner Martin, 2012. "Catching Growth Determinants with the Adaptive Lasso," German Economic Review, De Gruyter, vol. 13(1), pages 71-85, February.
    17. Sai Li & T. Tony Cai & Hongzhe Li, 2022. "Transfer learning for high‐dimensional linear regression: Prediction, estimation and minimax optimality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 149-173, February.
    18. Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
    19. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
    20. Winford H. Masanjala & Chris Papageorgiou, 2008. "Rough and lonely road to prosperity: a reexamination of the sources of growth in Africa using Bayesian model averaging," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 671-682.

    More about this item

    Keywords

    high-dimensional regression; confidence intervals; Moore-Penrose pseudoinverse; random projection; ridge regression;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20170032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.