On LASSO for predictive regression
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2021.02.002
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
References listed on IDEAS
- Liao, Zhipeng & Phillips, Peter C. B., 2015.
"Automated Estimation Of Vector Error Correction Models,"
Econometric Theory, Cambridge University Press, vol. 31(3), pages 581-646, June.
- Zhipeng Liao & Peter C.B. Phillips, 2012. "Automated Estimation of Vector Error Correction Models," Cowles Foundation Discussion Papers 1873, Cowles Foundation for Research in Economics, Yale University.
- Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
- Peter C. B. Phillips & Zhentao Shi, 2021.
"Boosting: Why You Can Use The Hp Filter,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
- Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting: Why you Can Use the HP Filter," Cowles Foundation Discussion Papers 2212, Cowles Foundation for Research in Economics, Yale University.
- Peter C. B. Phillips & Zhentao Shi, 2019. "Boosting: Why You Can Use the HP Filter," Papers 1905.00175, arXiv.org, revised Nov 2020.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
- Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
- Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
- Phillips, Peter C.B. & Ploberger, Werner, 1994.
"Posterior Odds Testing for a Unit Root with Data-Based Model Selection,"
Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
- Peter C.B. Phillips & Werner Ploberger, 1992. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Cowles Foundation Discussion Papers 1017, Cowles Foundation for Research in Economics, Yale University.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016.
"Identifying Latent Structures in Panel Data,"
Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
- Liangjun Su & Zhentao Shi & Peter C.B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Cowles Foundation Discussion Papers 1965, Cowles Foundation for Research in Economics, Yale University.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Working Papers 07-2014, Singapore Management University, School of Economics.
- Alexei Onatski & Chen Wang, 2021.
"Spurious Factor Analysis,"
Econometrica, Econometric Society, vol. 89(2), pages 591-614, March.
- Onatski, A. & Wang, C., 2020. "Spurious Factor Analysis," Cambridge Working Papers in Economics 2003, Faculty of Economics, University of Cambridge.
- Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
- Peter C. B. Phillips, 2015. "Pitfalls and Possibilities in Predictive Regression," Cowles Foundation Discussion Papers 2003, Cowles Foundation for Research in Economics, Yale University.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020.
"Dissecting Characteristics Nonparametrically,"
Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Finance, European Finance Association, vol. 33(5), pages 2326-2377.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," NBER Working Papers 23227, National Bureau of Economic Research, Inc.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2018. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 7187, CESifo.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 6391, CESifo.
- Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
- Alexandre Belloni & Victor Chernozhukov, 2009.
"L1-Penalized Quantile Regression in High-Dimensional Sparse Models,"
Papers
0904.2931, arXiv.org, revised Sep 2019.
- Alexandre Belloni & Victor Chernozhukov, 2009. "L1-Penalized quantile regression in high-dimensional sparse models," CeMMAP working papers CWP10/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- A. Belloni & V. Chernozhukov & K. Kato, 2015. "Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems," Biometrika, Biometrika Trust, vol. 102(1), pages 77-94.
- Lee, Ji Hyung, 2016.
"Predictive quantile regression with persistent covariates: IVX-QR approach,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
- Lee, JiHyung, 2015. "Predictive quantile regression with persistent covariates: IVX-QR approach," MPRA Paper 65150, University Library of Munich, Germany.
- Martin Lettau & Sydney Ludvigson, 2001.
"Consumption, Aggregate Wealth, and Expected Stock Returns,"
Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
- Lettau, Martin & Ludvigson, Sydney, 1999. "Consumption, Aggregate Wealth and Expected Stock Returns," CEPR Discussion Papers 2223, C.E.P.R. Discussion Papers.
- Martin Lettau & Sydney C. Ludvigson, 1999. "Consumption, aggregate wealth and expected stock returns," Staff Reports 77, Federal Reserve Bank of New York.
- Phillips, P C B, 1987.
"Time Series Regression with a Unit Root,"
Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
- Phillips, P.C.B., 1986. "Testing for a Unit Root in Time Series Regression," Cahiers de recherche 8633, Universite de Montreal, Departement de sciences economiques.
- Peter C.B. Phillips & Pierre Perron, 1986. "Testing for a Unit Root in Time Series Regression," Cowles Foundation Discussion Papers 795R, Cowles Foundation for Research in Economics, Yale University, revised Sep 1987.
- Tom Doan, "undated". "PPUNIT: RATS procedure to perform Phillips-Perron Unit Root test," Statistical Software Components RTS00160, Boston College Department of Economics.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Phillips, Peter C.B. & Lee, Ji Hyung, 2016. "Robust econometric inference with mixed integrated and mildly explosive regressors," Journal of Econometrics, Elsevier, vol. 192(2), pages 433-450.
- Kock, Anders Bredahl, 2016. "Consistent And Conservative Model Selection With The Adaptive Lasso In Stationary And Nonstationary Autoregressions," Econometric Theory, Cambridge University Press, vol. 32(1), pages 243-259, February.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Keisuke Hirano & Jonathan H. Wright, 2017. "Forecasting With Model Uncertainty: Representations and Risk Reduction," Econometrica, Econometric Society, vol. 85, pages 617-643, March.
- Alexei Onatski & Chen Wang, 2018.
"Alternative Asymptotics for Cointegration Tests in Large VARs,"
Econometrica, Econometric Society, vol. 86(4), pages 1465-1478, July.
- Alexei Onatski & Chen Wang, 2016. "Alternative Asymptotics for Cointegration Tests in Large VARs," Cambridge Working Papers in Economics 1637, Faculty of Economics, University of Cambridge.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Zhentao Shi, 2016. "Estimation of Sparse Structural Parameters with Many Endogenous Variables," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1582-1608, December.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Zhang, Rongmao & Robinson, Peter & Yao, Qiwei, 2019. "Identifying cointegration by eigenanalysis," LSE Research Online Documents on Economics 87431, London School of Economics and Political Science, LSE Library.
- Alex Chinco & Adam D. Clark‐Joseph & Mao Ye, 2019. "Sparse Signals in the Cross‐Section of Returns," Journal of Finance, American Finance Association, vol. 74(1), pages 449-492, February.
- Serena Ng & Pierre Perron, 2001.
"LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power,"
Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
- Serena Ng & Pierre Perron, 1997. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power," Boston College Working Papers in Economics 369, Boston College Department of Economics, revised 01 Sep 2000.
- Phillips, P C B, 1991.
"Optimal Inference in Cointegrated Systems,"
Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
- Peter C.B. Phillips, 1988. "Optimal Inference in Cointegrated Systems," Cowles Foundation Discussion Papers 866R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1989.
- Kock, Anders Bredahl & Callot, Laurent, 2015.
"Oracle inequalities for high dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
- Mehmet Caner & Hao Helen Zhang, 2014. "Adaptive Elastic Net for Generalized Methods of Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 30-47, January.
- Phillips, P C B, 1987.
"Time Series Regression with a Unit Root,"
Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
- Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
- Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(1), pages 270-290, February.
- Werner Ploberger & Peter C. B. Phillips, 2003.
"Empirical Limits for Time Series Econometric Models,"
Econometrica, Econometric Society, vol. 71(2), pages 627-673, March.
- Peter C.B. Phillips & Werner Ploberger, 1999. "Empirical Limits for Time Series Econometric Models," Cowles Foundation Discussion Papers 1220, Cowles Foundation for Research in Economics, Yale University.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
- Rongmao Zhang & Peter Robinson & Qiwei Yao, 2019. "Identifying Cointegration by Eigenanalysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 916-927, April.
- Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Chaohua Dong & Jiti Gao & Yundong Tu & Bin Peng, 2023.
"Robust M-Estimation for Additive Single-Index Cointegrating Time Series Models,"
Papers
2301.06631, arXiv.org.
- Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2023. "Robust M-Estimation for Additive Single-Index Cointegrating Time Series Models," Monash Econometrics and Business Statistics Working Papers 2/23, Monash University, Department of Econometrics and Business Statistics.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Etienne Wijler, 2022. "A restricted eigenvalue condition for unit-root non-stationary data," Papers 2208.12990, arXiv.org.
- Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
- Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Monash Econometrics and Business Statistics Working Papers 18/21, Monash University, Department of Econometrics and Business Statistics.
- Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Julien Hambuckers & Li Sun & Luca Trapin, 2023. "Measuring tail risk at high-frequency: An $L_1$-regularized extreme value regression approach with unit-root predictors," Papers 2301.01362, arXiv.org.
- Campeanu Emilia Mioara & Boitan Iustina Alina & Anghel Dan Gabriel, 2023. "Student engagement and academic performance in pandemic-driven online teaching: An exploratory and machine learning approach," Management & Marketing, Sciendo, vol. 18(s1), pages 315-339, December.
- Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
- David Neto, 2023. "Penalized leads-and-lags cointegrating regression: a simulation study and two empirical applications," Empirical Economics, Springer, vol. 65(2), pages 949-971, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
- Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023.
"Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Rui Fan & Ji Hyung Lee & Youngki Shin, 2021. "Predictive Quantile Regression with Mixed Roots and Increasing Dimensions: The ALQR Approach," Papers 2101.11568, arXiv.org, revised Dec 2022.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.
- Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
- Smeekes, Stephan & Wijler, Etienne, 2021.
"An automated approach towards sparse single-equation cointegration modelling,"
Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
- Stephan Smeekes & Etienne Wijler, 2018. "An Automated Approach Towards Sparse Single-Equation Cointegration Modelling," Papers 1809.08889, arXiv.org, revised Jul 2020.
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Liang, Chong & Schienle, Melanie, 2019.
"Determination of vector error correction models in high dimensions,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
- Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Working Paper Series in Economics 124, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
- Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
- Andersen, Torben G. & Varneskov, Rasmus T., 2021.
"Consistent inference for predictive regressions in persistent economic systems,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Consistent Inference for Predictive Regressions in Persistent Economic Systems," NBER Working Papers 28568, National Bureau of Economic Research, Inc.
- Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023.
"Transformed regression-based long-horizon predictability tests,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Demetrescu, Matei & Rodrigues, Paulo MM & Taylor, AM Robert, 2022. "Transformed Regression-based Long-Horizon Predictability Tests," Essex Finance Centre Working Papers 30620, University of Essex, Essex Business School.
- Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
- Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
- Ando, Tomohiro & Sueishi, Naoya, 2019. "Regularization parameter selection for penalized empirical likelihood estimator," Economics Letters, Elsevier, vol. 178(C), pages 1-4.
- Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015.
"Nonparametric predictive regression,"
Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
- Ioannis Kasparis & Elena Andreou & Peter C. B. Phillips, 2012. "Nonparametric Predictive Regression," University of Cyprus Working Papers in Economics 14-2012, University of Cyprus Department of Economics.
- Ioannis Kasparis & Elena Andreou & Peter C.B. Phillips, 2012. "Nonparametric Predictive Regression," Cowles Foundation Discussion Papers 1878, Cowles Foundation for Research in Economics, Yale University.
- Andreou, Elena & Kasparis, Ioannis & Phillips, Peter C. B., 2013. "Nonparametric Predictive Regression," CEPR Discussion Papers 9570, C.E.P.R. Discussion Papers.
More about this item
Keywords
Cointegration; Nonstationary time series; Machine learning; Shrinkage estimation; Variable selection;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:229:y:2022:i:2:p:322-349. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.