IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2467.html
   My bibliography  Save this paper

Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects

Author

Listed:
  • Linton, O. B.
  • Rücker, M.
  • Vogt, M.
  • Walsh, C.

Abstract

We develop new econometric methods for estimation and inference in high-dimensional panel data models with interactive fixed effects. Our approach can be regarded as a non-trivial extension of the very popular common correlated effects (CCE) approach. Roughly speaking, we proceed as follows: We first construct a projection device to eliminate the unobserved factors from the model by applying a dimensionality reduction transform to the matrix of cross-sectionally averaged covariates. The unknown parameters are then estimated by applying lasso techniques to the projected model. For inference purposes, we derive a desparsified version of our lasso-type estimator. While the original CCE approach is restricted to the low-dimensional case where the number of regressors is small and fixed, our methods can deal with both lowand high-dimensional situations where the number of regressors is large and may even exceed the overall sample size. We derive theory for our estimation and inference methods both in the large-T-case, where the time series length T tends to infinity, and in the small-T-case, where T is a fixed natural number. Specifically, we derive the convergence rate of our estimator and show that its desparsified version is asymptotically normal under suitable regularity conditions. The theoretical analysis of the paper is complemented by a simulation study and an empirical application to characteristic based asset pricing.

Suggested Citation

  • Linton, O. B. & Rücker, M. & Vogt, M. & Walsh, C., 2024. "Estimation and Inference in High-Dimensional Panel Data Models with Interactive Fixed Effects," Cambridge Working Papers in Economics 2467, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2467
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2467.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    2. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    3. Cheng, Tingting & Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2024. "GMM estimation for high-dimensional panel data models," Journal of Econometrics, Elsevier, vol. 244(1).
    4. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    5. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.
    6. Kock, Anders Bredahl, 2013. "Oracle Efficient Variable Selection In Random And Fixed Effects Panel Data Models," Econometric Theory, Cambridge University Press, vol. 29(1), pages 115-152, February.
    7. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    8. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    9. Amihud, Yakov & Mendelson, Haim, 1986. "Asset pricing and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 17(2), pages 223-249, December.
    10. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    11. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    12. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    13. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    14. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    15. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    16. Cheng, Tingting & Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2024. "GMM estimation for high-dimensional panel data models," Journal of Econometrics, Elsevier, vol. 244(1).
    17. Joakim Westerlund, 2018. "CCE in panels with general unknown factors," Econometrics Journal, Royal Economic Society, vol. 21(3), pages 264-276, October.
    18. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    19. Karabiyik, Hande & Reese, Simon & Westerlund, Joakim, 2017. "On the role of the rank condition in CCE estimation of factor-augmented panel regressions," Journal of Econometrics, Elsevier, vol. 197(1), pages 60-64.
    20. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    21. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    22. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    23. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    24. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    25. Joakim Westerlund & Yana Petrova & Milda Norkute, 2019. "CCE in fixed‐T panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 746-761, August.
    26. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    27. Daniel, Kent & Titman, Sheridan, 1997. "Evidence on the Characteristics of Cross Sectional Variation in Stock Returns," Journal of Finance, American Finance Association, vol. 52(1), pages 1-33, March.
    28. Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
    29. Beyhum, Jad & Gautier, Eric, 2019. "Square-root nuclear norm penalized estimator for panel data models with approximately low-rank unobserved Heterogeneity," TSE Working Papers 19-1008, Toulouse School of Economics (TSE).
    30. Hyungsik Roger Moon & Martin Weidner, 2018. "Nuclear Norm Regularized Estimation of Panel Regression Models," Papers 1810.10987, arXiv.org, revised Jun 2023.
    31. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    32. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    33. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    34. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    35. Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
    36. Westerlund, Joakim & Urbain, Jean-Pierre, 2013. "On the estimation and inference in factor-augmented panel regressions with correlated loadings," Economics Letters, Elsevier, vol. 119(3), pages 247-250.
    37. Kock, Anders Bredahl & Tang, Haihan, 2019. "Uniform Inference In High-Dimensional Dynamic Panel Data Models With Approximately Sparse Fixed Effects," Econometric Theory, Cambridge University Press, vol. 35(2), pages 295-359, April.
    38. repec:hal:journl:peer-00796743 is not listed on IDEAS
    39. Cheng, Tingting & Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2024. "GMM estimation for high-dimensional panel data models," Journal of Econometrics, Elsevier, vol. 244(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Cambridge Working Papers in Economics 2242, Faculty of Economics, University of Cambridge.
    2. Stauskas, Ovidijus & De Vos, Ignace, 2024. "Handling Distinct Correlated Effects with CCE," MPRA Paper 120194, University Library of Munich, Germany.
    3. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
    4. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    5. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    6. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
    7. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2023. "Testing for correlation between the regressors and factor loadings in heterogeneous panels with interactive effects," Empirical Economics, Springer, vol. 64(6), pages 2611-2659, June.
    8. Ignace De Vos & Gerdie Everaert & Vasilis Sarafidis, 2021. "A method for evaluating the rank condition for CCE estimators," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1013, Ghent University, Faculty of Economics and Business Administration.
    9. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    10. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2019. "Testing for Correlated Factor Loadings in Cross Sectionally Dependent Panels," SERIES 02-2019, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Jun 2019.
    12. Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
    13. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    14. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    15. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    16. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    17. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    18. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    19. Evan Totty, 2017. "The Effect Of Minimum Wages On Employment: A Factor Model Approach," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1712-1737, October.
    20. Jiang, Bin & Yang, Yanrong & Gao, Jiti & Hsiao, Cheng, 2021. "Recursive estimation in large panel data models: Theory and practice," Journal of Econometrics, Elsevier, vol. 224(2), pages 439-465.

    More about this item

    Keywords

    CCE estimator; Desparsified Lasso; high-dimensional model; interactive fixed effects; lasso; panel data;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.