Markus Pelger
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Working papers
- Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023.
"A Simple Method for Predicting Covariance Matrices of Financial Returns,"
Papers
2305.19484, arXiv.org, revised Nov 2023.
Cited by:
- Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
- Gianluca Cubadda & Stefano Grassi & Barbara Guardabascio, 2024.
"The Time-Varying Multivariate Autoregressive Index Model,"
CEIS Research Paper
571, Tor Vergata University, CEIS, revised 10 Jan 2024.
- G. Cubadda & S. Grassi & B. Guardabascio, 2022. "The Time-Varying Multivariate Autoregressive Index Model," Papers 2201.07069, arXiv.org.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023.
"Machine-Learning the Skill of Mutual Fund Managers,"
CEPR Discussion Papers
18129, C.E.P.R. Discussion Papers.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
- Ron Kaniel & Zihan Lin & Markus Pelger & Stijn Van Nieuwerburgh, 2022. "Machine-Learning the Skill of Mutual Fund Managers," NBER Working Papers 29723, National Bureau of Economic Research, Inc.
Cited by:
- Ha, Yeonjeong & Oh, Haejune, 2024. "Choice for smart investment in mutual funds: Single- or multi-period performance ranks," Finance Research Letters, Elsevier, vol. 59(C).
- Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
- Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Dynamic Asset Allocation with Asset-Specific Regime Forecasts," Papers 2406.09578, arXiv.org, revised Aug 2024.
- Li, Zhiyong & Rao, Xiao, 2023. "Exploring the zoo of predictors for mutual fund performance in China," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
- Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Predicting the distributions of stock returns around the globe in the era of big data and learning," Papers 2408.07497, arXiv.org.
- DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
- Damir Filipovi'c & Puneet Pasricha, 2022. "Empirical Asset Pricing via Ensemble Gaussian Process Regression," Papers 2212.01048, arXiv.org.
- Damir Filipović & Markus Pelger & Ye Ye, 2022.
"Stripping the Discount Curve - a Robust Machine Learning Approach,"
Swiss Finance Institute Research Paper Series
22-24, Swiss Finance Institute.
Cited by:
- Darrell Duffie & Michael Fleming & Frank Keane & Claire Nelson & Or Shachar & Peter Van Tassel, 2023.
"Dealer capacity and US Treasury market functionality,"
BIS Working Papers
1138, Bank for International Settlements.
- Darrell Duffie & Michael J. Fleming & Frank M. Keane & Claire Nelson & Or Shachar & Peter Van Tassel, 2023. "Dealer Capacity and U.S. Treasury Market Functionality," Staff Reports 1070, Federal Reserve Bank of New York.
- Eric Luxenberg & Philipp Schiele & Stephen Boyd, 2022. "Robust Bond Portfolio Construction via Convex-Concave Saddle Point Optimization," Papers 2212.02570, arXiv.org, revised Jan 2024.
- Eric Luxenberg & Philipp Schiele & Stephen Boyd, 2024. "Robust Bond Portfolio Construction via Convex–Concave Saddle Point Optimization," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1089-1115, June.
- Dennis Schroers, 2024. "Robust Functional Data Analysis for Stochastic Evolution Equations in Infinite Dimensions," Papers 2401.16286, arXiv.org, revised Jun 2024.
- Darrell Duffie & Michael Fleming & Frank Keane & Claire Nelson & Or Shachar & Peter Van Tassel, 2023.
"Dealer capacity and US Treasury market functionality,"
BIS Working Papers
1138, Bank for International Settlements.
- Luyang Chen & Markus Pelger & Jason Zhu, 2019.
"Deep Learning in Asset Pricing,"
Papers
1904.00745, arXiv.org, revised Aug 2021.
- Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
Cited by:
- Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
- Alexander Arimond & Damian Borth & Andreas Hoepner & Michael Klawunn & Stefan Weisheit, 2020. "Neural Networks and Value at Risk," Papers 2005.01686, arXiv.org, revised May 2020.
- Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021.
"Can machine learning help to select portfolios of mutual funds?,"
Economics Working Papers
1772, Department of Economics and Business, Universitat Pompeu Fabra.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
- Alessi, Lucia & Ossola, Elisa & Panzica, Roberto, 2023. "When do investors go green? Evidence from a time-varying asset-pricing model," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
- Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
- Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2021. "Deep Calibration of Interest Rates Model," Papers 2110.15133, arXiv.org, revised Sep 2024.
- Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
- Ma, Tian & Wang, Wanwan & Chen, Yu, 2023. "Attention is all you need: An interpretable transformer-based asset allocation approach," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Eric Andr'e & Guillaume Coqueret, 2020. "Dirichlet policies for reinforced factor portfolios," Papers 2011.05381, arXiv.org, revised Jun 2021.
- Qihui Chen & Nikolai Roussanov & Xiaoliang Wang, 2023.
"Semiparametric Conditional Factor Models: Estimation and Inference,"
NBER Working Papers
31817, National Bureau of Economic Research, Inc.
- Qihui Chen & Nikolai Roussanov & Xiaoliang Wang, 2021. "Semiparametric Conditional Factor Models: Estimation and Inference," Papers 2112.07121, arXiv.org, revised Sep 2023.
- Tian Ma & Cunfei Liao & Fuwei Jiang, 2023. "Timing the factor zoo via deep learning: Evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 485-505, March.
- Philip Ndikum, 2020. "Machine Learning Algorithms for Financial Asset Price Forecasting," Papers 2004.01504, arXiv.org.
- Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
- Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
CERGE-EI Working Papers
wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
- Anastasis Kratsios & Cody Hyndman, 2020. "Deep Arbitrage-Free Learning in a Generalized HJM Framework via Arbitrage-Regularization," Risks, MDPI, vol. 8(2), pages 1-30, April.
- Grammig, Joachim & Hanenberg, Constantin & Schlag, Christian & Sönksen, Jantje, 2020. "Diverging roads: Theory-based vs. machine learning-implied stock risk premia," University of Tübingen Working Papers in Business and Economics 130, University of Tuebingen, Faculty of Economics and Social Sciences, School of Business and Economics.
- Haoyang Cao & Xin Guo, 2021. "Generative Adversarial Network: Some Analytical Perspectives," Papers 2104.12210, arXiv.org, revised Sep 2021.
- Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
- Ruoxuan Xiong & Markus Pelger, 2019.
"Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference,"
Papers
1910.08273, arXiv.org, revised Jan 2022.
- Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
Cited by:
- Ivan Fernandez-Val & Hugo Freeman & Martin Weidner, 2020.
"Low-rank approximations of nonseparable panel models,"
CeMMAP working papers
CWP52/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan Fernandez-Val & Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," CeMMAP working papers CWP10/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 40-77.
- Helena Chuliá & Sabuhi Khalili & Jorge M. Uribe, 2024. "Monitoring time-varying systemic risk in sovereign debt and currency markets with generative AI," IREA Working Papers 202402, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
- Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023.
"Factor-based imputation of missing values and covariances in panel data of large dimensions,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.
- Ercument Cahan & Jushan Bai & Serena Ng, 2021. "Factor-Based Imputation of Missing Values and Covariances in Panel Data of Large Dimensions," Papers 2103.03045, arXiv.org, revised Feb 2022.
- Choi, Jungjun & Kwon, Hyukjun & Liao, Yuan, 2024. "Inference for low-rank completion without sample splitting with application to treatment effect estimation," Journal of Econometrics, Elsevier, vol. 240(1).
- Iv'an Fern'andez-Val & Hugo Freeman & Martin Weidner, 2020. "Low-Rank Approximations of Nonseparable Panel Models," Papers 2010.12439, arXiv.org, revised Mar 2021.
- Zhou, Ruichao & Wu, Jianhong, 2023. "Determining the number of change-points in high-dimensional factor models by cross-validation with matrix completion," Economics Letters, Elsevier, vol. 232(C).
- Liu, Wei & Luo, Lan & Zhou, Ling, 2023. "Online missing value imputation for high-dimensional mixed-type data via generalized factor models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
- Giraldo, Carlos & Giraldo, Iader & Gomez-Gonzalez, Jose E. & Uribe, Jorge M., 2024.
"High frequency monitoring of credit creation: A new tool for central banks in emerging market economies,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 97(C).
- Giraldo, Carlos & Giraldo, Iader & Gomez-Gonzalez, Jose E. & Uribe, Jorge M., 2024. "High Frequency Monitoring of Credit Creation: A New Tool for Central Banks in Emerging Market Economies," Documentos de trabajo 21077, FLAR.
- Guido Imbens & Nathan Kallus & Xiaojie Mao, 2021. "Controlling for Unmeasured Confounding in Panel Data Using Minimal Bridge Functions: From Two-Way Fixed Effects to Factor Models," Papers 2108.03849, arXiv.org.
- Jose E. Gomez-Gonzalez & Jorge M. Uribe & Oscar M. Valencia, 2024.
"Asymmetric Sovereign Risk: Implications for Climate Change Preparation,"
IREA Working Papers
202401, University of Barcelona, Research Institute of Applied Economics, revised Jan 2024.
- Gomez-Gonzalez, Jose E. & Uribe, Jorge M. & Valencia, Oscar, 2024. "Asymmetric Sovereign Risk: Implications for Climate Change Preparation," IDB Publications (Working Papers) 13447, Inter-American Development Bank.
- Yinchu Zhu, 2019. "How well can we learn large factor models without assuming strong factors?," Papers 1910.10382, arXiv.org, revised Nov 2019.
- Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
- Vivek F. Farias & Andrew A. Li & Tianyi Peng, 2021. "Learning Treatment Effects in Panels with General Intervention Patterns," Papers 2106.02780, arXiv.org, revised Mar 2023.
- Luis Costa & Vivek F. Farias & Patricio Foncea & Jingyuan (Donna) Gan & Ayush Garg & Ivo Rosa Montenegro & Kumarjit Pathak & Tianyi Peng & Dusan Popovic, 2023. "Generalized Synthetic Control for TestOps at ABI: Models, Algorithms, and Infrastructure," Interfaces, INFORMS, vol. 53(5), pages 336-349, September.
- Retsef Levi & Elisabeth Paulson & Georgia Perakis & Emily Zhang, 2024. "Heterogeneous Treatment Effects in Panel Data," Papers 2406.05633, arXiv.org.
- Jungjun Choi & Ming Yuan, 2023. "Matrix Completion When Missing Is Not at Random and Its Applications in Causal Panel Data Models," Papers 2308.02364, arXiv.org.
- Markus Pelger & Ruoxuan Xiong, 2018.
"State-Varying Factor Models of Large Dimensions,"
Papers
1807.02248, arXiv.org, revised Oct 2020.
- Markus Pelger & Ruoxuan Xiong, 2022. "State-Varying Factor Models of Large Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1315-1333, June.
Cited by:
- Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Jun 2024.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Papers
2210.16042, arXiv.org.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
- Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2020.
"Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects,"
Papers
2012.03182, arXiv.org, revised Nov 2021.
- Gao, Jiti & Liu, Fei & Peng, Bin & Yan, Yayi, 2023. "Binary response models for heterogeneous panel data with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 1654-1679.
- Yufeng Mao & Bin Peng & Mervyn Silvapulle & Param Silvapulle & Yanrong Yang, 2021. "Decomposition of Bilateral Trade Flows Using a Three-Dimensional Panel Data Model," Papers 2101.06805, arXiv.org.
- Jiti Gao & Fei Liu & Bin peng, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 44/20, Monash University, Department of Econometrics and Business Statistics.
- Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
- Luyang Chen & Markus Pelger & Jason Zhu, 2019.
"Deep Learning in Asset Pricing,"
Papers
1904.00745, arXiv.org, revised Aug 2021.
- Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
- Ruoxuan Xiong & Markus Pelger, 2019.
"Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference,"
Papers
1910.08273, arXiv.org, revised Jan 2022.
- Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Yufeng Mao & Bin Peng & Mervyn J Silvapulle & Param Silvapulle & Yanrong Yang, 2021. "Decomposition of Bilateral Trade Flows Using a Three-Dimensional Panel Data Model," Monash Econometrics and Business Statistics Working Papers 7/21, Monash University, Department of Econometrics and Business Statistics.
- Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
- Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
- Pelger, Markus, 2019. "Large-dimensional factor modeling based on high-frequency observations," Journal of Econometrics, Elsevier, vol. 208(1), pages 23-42.
- Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
- Wang, Hanchao & Peng, Bin & Li, Degui & Leng, Chenlei, 2021. "Nonparametric estimation of large covariance matrices with conditional sparsity," Journal of Econometrics, Elsevier, vol. 223(1), pages 53-72.
- Lin Fan & Peter W. Glynn & Markus Pelger, 2018.
"Change-Point Testing for Risk Measures in Time Series,"
Papers
1809.02303, arXiv.org, revised Jul 2023.
Cited by:
- Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
- Lettau, Martin & Pelger, Markus, 2018.
"Estimating Latent Asset-Pricing Factors,"
CEPR Discussion Papers
12926, C.E.P.R. Discussion Papers.
- Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
- Martin Lettau & Markus Pelger, 2018. "Estimating Latent Asset-Pricing Factors," NBER Working Papers 24618, National Bureau of Economic Research, Inc.
Cited by:
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Jushan Bai & Serena Ng, 2021.
"Approximate Factor Models with Weaker Loadings,"
Papers
2109.03773, arXiv.org, revised Mar 2023.
- Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021.
"Measurement of factor strength: Theory and practice,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2020. "Measurement of Factor Strenght: Theory and Practice," CESifo Working Paper Series 8146, CESifo.
- Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2020. "Measurement of Factor Strength: Theory and Practice," Monash Econometrics and Business Statistics Working Papers 7/20, Monash University, Department of Econometrics and Business Statistics.
- Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
- Elizaveta V. Anufrieva, 2019. "Influence of Macroeconomic Factors on the Return of Russian Stock Exchange Indices," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 4, pages 75-87, August.
- Lettau, Martin & Pelger, Markus, 2018.
"Factors that Fit the Time Series and Cross-Section of Stock Returns,"
CEPR Discussion Papers
13049, C.E.P.R. Discussion Papers.
- Martin Lettau & Markus Pelger, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," NBER Working Papers 24858, National Bureau of Economic Research, Inc.
- Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
- Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021.
"Estimating the anomaly base rate,"
Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
- Alexander M. Chinco & Andreas Neuhierl & Michael Weber, 2019. "Estimating The Anomaly Base Rate," NBER Working Papers 26493, National Bureau of Economic Research, Inc.
- Stanislav Anatolyev & Anna Mikusheva, 2018.
"Factor models with many assets: strong factors, weak factors, and the two-pass procedure,"
Papers
1807.04094, arXiv.org, revised Apr 2019.
- Anatolyev, Stanislav & Mikusheva, Anna, 2022. "Factor models with many assets: Strong factors, weak factors, and the two-pass procedure," Journal of Econometrics, Elsevier, vol. 229(1), pages 103-126.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Solène Collot & Tobias Hemauer, 2021. "A literature review of new methods in empirical asset pricing: omitted-variable and errors-in-variable bias," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(1), pages 77-100, March.
- Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
- P. S. Morawakage & G. Earl & B. Liu & E. Roca & A. Omura, 2023. "Housing Risk and Returns in Submarkets with Spatial Dependence and Heterogeneity," The Journal of Real Estate Finance and Economics, Springer, vol. 67(4), pages 695-734, November.
- Belloni, Alexandre & Chen, Mingli & Madrid Padilla, Oscar Hernan & Wang, Zixuan (Kevin), 2019.
"High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing,"
The Warwick Economics Research Paper Series (TWERPS)
1230, University of Warwick, Department of Economics.
- Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
- Xiaolu Wei & Hongbing Ouyang, 2023. "Forecasting Carbon Price Using Double Shrinkage Methods," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
- Jorge Guijarro-Ordonez, 2019. "High-dimensional statistical arbitrage with factor models and stochastic control," Papers 1901.09309, arXiv.org, revised Jun 2021.
- Li, Hong & Shi, Yanlin, 2021. "A new unique information share measure with applications on cross-listed Chinese banks," Journal of Banking & Finance, Elsevier, vol. 128(C).
- Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
- Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
- Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
- Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).
- Ruoxuan Xiong & Markus Pelger, 2019.
"Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference,"
Papers
1910.08273, arXiv.org, revised Jan 2022.
- Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
- Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
- Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
- Mariano González-Sánchez & M. Encina Morales de Vega, 2021. "Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
- Amit K. Sinha, 2021. "The reliability of geometric Brownian motion forecasts of S&P500 index values," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1444-1462, December.
- Sun, Yang & Zhang, Xuan & Zhang, Zhekai, 2022. "The reduced-rank beta in linear stochastic discount factor models," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Ding, Xiucai & Yang, Fan, 2022. "Edge statistics of large dimensional deformed rectangular matrices," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- M. Hashem Pesaran & Ron P. Smith, 2021. "Factor Strengths, Pricing Errors, and Estimation of Risk Premia," CESifo Working Paper Series 8947, CESifo.
- Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
- Dat Thanh Tran & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2021. "Bilinear Input Normalization for Neural Networks in Financial Forecasting," Papers 2109.00983, arXiv.org.
- Lettau, Martin & Pelger, Markus, 2018.
"Factors that Fit the Time Series and Cross-Section of Stock Returns,"
CEPR Discussion Papers
13049, C.E.P.R. Discussion Papers.
- Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
- Martin Lettau & Markus Pelger, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," NBER Working Papers 24858, National Bureau of Economic Research, Inc.
Cited by:
- Bandi, Federico M. & Chaudhuri, Shomesh E. & Lo, Andrew W. & Tamoni, Andrea, 2021. "Spectral factor models," Journal of Financial Economics, Elsevier, vol. 142(1), pages 214-238.
- Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021.
"Machine Learning and Factor-Based Portfolio Optimization,"
Papers
2107.13866, arXiv.org.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Working Papers 202111, Geary Institute, University College Dublin.
- Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023.
"Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models,"
Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
- Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2020. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 118924, London School of Economics and Political Science, LSE Library.
- Son, Bumho & Lee, Jaewook, 2022. "Graph-based multi-factor asset pricing model," Finance Research Letters, Elsevier, vol. 44(C).
- Wei Liu & James W. Kolari, 2022. "Multifactor Market Indexes," JRFM, MDPI, vol. 15(4), pages 1-26, March.
- Solène Collot & Tobias Hemauer, 2021. "A literature review of new methods in empirical asset pricing: omitted-variable and errors-in-variable bias," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(1), pages 77-100, March.
- Andrew Detzel & Robert Novy‐Marx & Mihail Velikov, 2023. "Model Comparison with Transaction Costs," Journal of Finance, American Finance Association, vol. 78(3), pages 1743-1775, June.
- Lee, King Fuei, 2021. "An Anomaly within an Anomaly: The Halloween Effect in the Long-term Reversal Anomaly," MPRA Paper 110859, University Library of Munich, Germany.
- Gordon Dash & Nina Kajiji & Bruno G. Kamdem, 2024. "Asset Returns: Reimagining Generative ESG Indexes and Market Interconnectedness," JRFM, MDPI, vol. 17(10), pages 1-21, October.
- Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
- Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
- Matthew F. Dixon & Nicholas G. Polson & Kemen Goicoechea, 2022. "Deep Partial Least Squares for Empirical Asset Pricing," Papers 2206.10014, arXiv.org.
- Andrew Y. Chen, 2019. "The Limits of p-Hacking : A Thought Experiment," Finance and Economics Discussion Series 2019-016, Board of Governors of the Federal Reserve System (U.S.).
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
- Xiaolu Wei & Hongbing Ouyang, 2023. "Forecasting Carbon Price Using Double Shrinkage Methods," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
- In Choi & Rui Lin & Yongcheol Shin, 2020.
"Canonical Correlation-based Model Selection for the Multilevel Factors,"
Working Papers
2008, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Choi, In & Lin, Rui & Shin, Yongcheol, 2023. "Canonical correlation-based model selection for the multilevel factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
- Li, Hong & Shi, Yanlin, 2021. "A new unique information share measure with applications on cross-listed Chinese banks," Journal of Banking & Finance, Elsevier, vol. 128(C).
- Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
- Eric Andr'e & Guillaume Coqueret, 2020. "Dirichlet policies for reinforced factor portfolios," Papers 2011.05381, arXiv.org, revised Jun 2021.
- Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
- Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).
- Luyang Chen & Markus Pelger & Jason Zhu, 2019.
"Deep Learning in Asset Pricing,"
Papers
1904.00745, arXiv.org, revised Aug 2021.
- Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
- Ruoxuan Xiong & Markus Pelger, 2019.
"Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference,"
Papers
1910.08273, arXiv.org, revised Jan 2022.
- Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Jozef Barunik & Matej Nevrla, 2022. "Common Idiosyncratic Quantile Risk," Papers 2208.14267, arXiv.org, revised Nov 2024.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023.
"Machine-learning the skill of mutual fund managers,"
Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-Learning the Skill of Mutual Fund Managers," CEPR Discussion Papers 18129, C.E.P.R. Discussion Papers.
- Ron Kaniel & Zihan Lin & Markus Pelger & Stijn Van Nieuwerburgh, 2022. "Machine-Learning the Skill of Mutual Fund Managers," NBER Working Papers 29723, National Bureau of Economic Research, Inc.
- Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
- Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
- Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
- Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
- Martin Lettau & Markus Pelger, 2018.
"Estimating Latent Asset-Pricing Factors,"
NBER Working Papers
24618, National Bureau of Economic Research, Inc.
- Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
- Lettau, Martin & Pelger, Markus, 2018. "Estimating Latent Asset-Pricing Factors," CEPR Discussion Papers 12926, C.E.P.R. Discussion Papers.
- Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
- Feng, Guanhao & He, Jingyu, 2022. "Factor investing: A Bayesian hierarchical approach," Journal of Econometrics, Elsevier, vol. 230(1), pages 183-200.
- van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.
- Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
- Andrew Y. Chen, 2021. "The Limits of p‐Hacking: Some Thought Experiments," Journal of Finance, American Finance Association, vol. 76(5), pages 2447-2480, October.
- Bagnara, Matteo & Goodarzi, Milad, 2023. "Clustering-based sector investing," SAFE Working Paper Series 397, Leibniz Institute for Financial Research SAFE.
- Neuhierl, Andreas & Varneskov, Rasmus T., 2021. "Frequency dependent risk," Journal of Financial Economics, Elsevier, vol. 140(2), pages 644-675.
- Mikhail Chernov & Magnus Dahlquist & Lars Lochstoer, 2023.
"Pricing Currency Risks,"
Journal of Finance, American Finance Association, vol. 78(2), pages 693-730, April.
- Mikhail Chernov & Magnus Dahlquist & Lars A. Lochstoer, 2020. "Pricing Currency Risks," NBER Working Papers 28260, National Bureau of Economic Research, Inc.
- Chernov, Mikhail & Dahlquist, Magnus & Lochstoer, Lars, 2020. "Pricing Currency Risks," CEPR Discussion Papers 15571, C.E.P.R. Discussion Papers.
- Shi, Qi, 2023. "The RP-PCA factors and stock return predictability: An aligned approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Markus Pelger, 2020. "Understanding Systematic Risk: A High‐Frequency Approach," Journal of Finance, American Finance Association, vol. 75(4), pages 2179-2220, August.
- Asano, Takao & Cai, Xiaojing & Sakemoto, Ryuta, 2024. "Currency portfolios and global foreign exchange ambiguity," Finance Research Letters, Elsevier, vol. 65(C).
- Breitung, Christian, 2023. "Automated stock picking using random forests," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 532-556.
- Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
- Claudio Fontana & Markus Pelger & Eckhard Platen, 2017.
"On the existence of sure profits via flash strategies,"
Papers
1708.03099, arXiv.org, revised Jul 2019.
Cited by:
- Claudio Fontana & Zorana Grbac & Thorsten Schmidt, 2022. "Term structure modelling with overnight rates beyond stochastic continuity," Working Papers hal-03898872, HAL.
- Claudio Fontana & Zorana Grbac & Thorsten Schmidt, 2022. "Term structure modelling with overnight rates beyond stochastic continuity," Papers 2202.00929, arXiv.org, revised Aug 2023.
- Claudio Fontana & Zorana Grbac & Sandrine Gumbel & Thorsten Schmidt, 2018. "Term structure modeling for multiple curves with stochastic discontinuities," Papers 1810.09882, arXiv.org, revised Dec 2019.
- Alessio Calvelli, 2022. "No-Arbitrage Pricing, Dynamics and Forward Prices of Collateralized Derivatives," Papers 2208.08746, arXiv.org, revised Jun 2024.
- Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
- Claudio Fontana & Markus Pelger & Eckhard Platen, 2017.
"Sure Profits via Flash Strategies and the Impossibility of Predictable Jumps,"
Research Paper Series
385, Quantitative Finance Research Centre, University of Technology, Sydney.
Cited by:
- Fontana, Claudio & Schmidt, Thorsten, 2018. "General dynamic term structures under default risk," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3353-3386.
- Nan Chen & Paul Glasserman & Behzad Nouri & Markus Pelger, 2013.
"CoCos, Bail-In, and Tail Risk,"
Working Papers
13-04, Office of Financial Research, US Department of the Treasury.
Cited by:
- Mike Derksen & Peter Spreij & Sweder van Wijnbergen, 2018.
"Accounting Noise and the Pricing of CoCos,"
Papers
1804.06890, arXiv.org.
- Mike Derksen & Peter Spreij & Sweder Van Wijnbergen, 2022. "ACCOUNTING NOISE AND THE PRICING OF CoCos," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 25(07n08), pages 1-60, November.
- van Wijnbergen, Sweder & Spreij, Peter & Derksen, Mike, 2018. "Accounting Noise and the Pricing of Cocos," CEPR Discussion Papers 12869, C.E.P.R. Discussion Papers.
- Mike Derksen & Peter Spreij & Sweder van Wijnbergen, 2018. "Accounting Noise and the Pricing of Cocos," Tinbergen Institute Discussion Papers 18-037/VI, Tinbergen Institute.
- van Wijnbergen, Sweder & Chan, Stephanie, 2016. "CoCo Design, Risk Shifting and Financial Fragility," CEPR Discussion Papers 11099, C.E.P.R. Discussion Papers.
- Delphine Boursicot & Geneviève Gauthier & Farhad Pourkalbassi, 2019. "Contingent Convertible Debt: The Impact on Equity Holders," Risks, MDPI, vol. 7(2), pages 1-35, April.
- Mark D. Flood & George G. Korenko, 2015.
"Systematic scenario selection: stress testing and the nature of uncertainty,"
Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 43-59, January.
- Mark D. Flood & George G. Korenko, 2013. "Systematic Scenario Selection: Stress Testing and the Nature of Uncertainty," Working Papers 13-05, Office of Financial Research, US Department of the Treasury.
- Levy-Carciente, Sary & Kenett, Dror Y. & Avakian, Adam & Stanley, H. Eugene & Havlin, Shlomo, 2015. "Dynamical macroprudential stress testing using network theory," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 164-181.
- Caporale, Guglielmo Maria & Kang, Woo-Young, 2021.
"On the preferences of CoCo bond buyers and sellers,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
- Guglielmo Maria Caporale & Woo-Young Kang, 2019. "On the preferences of CoCo bond buyers and sellers," CESifo Working Paper Series 7551, CESifo.
- Paul Glasserman & Chulmin Kang & Wanmo Kang, 2013. "Stress Scenario Selection by Empirical Likelihood," Working Papers 13-07, Office of Financial Research, US Department of the Treasury.
- Stephanie Chan & Sweder van Wijnbergen, 2016. "Coco Design, Risk Shifting Incentives and Capital Regulation," Tinbergen Institute Discussion Papers 16-007/VI, Tinbergen Institute, revised 13 Nov 2017.
- Farmer, J. Doyne & Kleinnijenhuis, Alissa & Goodhart, Charles, 2021.
"Systemic implications of the bail-in design,"
INET Oxford Working Papers
2021-21, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Farmer, J. Doyne & Goodhart, C. A. E. & Kleinnijenhuis, Alissa M., 2021. "Systemic implications of the bail-in design," LSE Research Online Documents on Economics 111903, London School of Economics and Political Science, LSE Library.
- Fatouh, Mahmoud & McMunn, Ayowande, 2019. "Shareholder risk-taking incentives in the presence of contingent capital," Bank of England working papers 775, Bank of England.
- Office of Financial Research (ed.), 2013. "Office of Financial Research 2013 Annual Report," Reports, Office of Financial Research, US Department of the Treasury, number 13-2, May.
- Mike Derksen & Peter Spreij & Sweder van Wijnbergen, 2018.
"Accounting Noise and the Pricing of CoCos,"
Papers
1804.06890, arXiv.org.
Articles
- Luyang Chen & Markus Pelger & Jason Zhu, 2024.
"Deep Learning in Asset Pricing,"
Management Science, INFORMS, vol. 70(2), pages 714-750, February.
See citations under working paper version above.
- Luyang Chen & Markus Pelger & Jason Zhu, 2019. "Deep Learning in Asset Pricing," Papers 1904.00745, arXiv.org, revised Aug 2021.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
See citations under working paper version above.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023.
"Machine-learning the skill of mutual fund managers,"
Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
See citations under working paper version above.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-Learning the Skill of Mutual Fund Managers," CEPR Discussion Papers 18129, C.E.P.R. Discussion Papers.
- Ron Kaniel & Zihan Lin & Markus Pelger & Stijn Van Nieuwerburgh, 2022. "Machine-Learning the Skill of Mutual Fund Managers," NBER Working Papers 29723, National Bureau of Economic Research, Inc.
- Markus Pelger & Ruoxuan Xiong, 2022.
"State-Varying Factor Models of Large Dimensions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1315-1333, June.
See citations under working paper version above.
- Markus Pelger & Ruoxuan Xiong, 2018. "State-Varying Factor Models of Large Dimensions," Papers 1807.02248, arXiv.org, revised Oct 2020.
- Markus Pelger & Ruoxuan Xiong, 2022.
"Interpretable Sparse Proximate Factors for Large Dimensions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1642-1664, October.
Cited by:
- Jie Wei & Yonghui Zhang, 2023. "Does Principal Component Analysis Preserve the Sparsity in Sparse Weak Factor Models?," Papers 2305.05934, arXiv.org, revised Nov 2024.
- Stephen Boyd & Kasper Johansson & Ronald Kahn & Philipp Schiele & Thomas Schmelzer, 2024. "Markowitz Portfolio Construction at Seventy," Papers 2401.05080, arXiv.org.
- Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
- Lettau, Martin & Pelger, Markus, 2020.
"Estimating latent asset-pricing factors,"
Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
See citations under working paper version above.
- Martin Lettau & Markus Pelger, 2018. "Estimating Latent Asset-Pricing Factors," NBER Working Papers 24618, National Bureau of Economic Research, Inc.
- Lettau, Martin & Pelger, Markus, 2018. "Estimating Latent Asset-Pricing Factors," CEPR Discussion Papers 12926, C.E.P.R. Discussion Papers.
- Markus Pelger, 2020.
"Understanding Systematic Risk: A High‐Frequency Approach,"
Journal of Finance, American Finance Association, vol. 75(4), pages 2179-2220, August.
Cited by:
- Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
- Hai-Chuan Xu & Fredj Jawadi & Jie Zhou & Wei-Xing Zhou, 2023.
"Quantifying interconnectedness and centrality ranking among financial institutions with TVP-VAR framework,"
Empirical Economics, Springer, vol. 65(1), pages 93-110, July.
- Hai-Chuan Xu & Fredj Jawadi & Jie Zhou & Wei-Xing Zhou, 2022. "Quantifying interconnectedness and centrality ranking among financial institutions with TVP-VAR framework," Post-Print hal-04478741, HAL.
- Chao, Xiangrui & Ran, Qin & Chen, Jia & Li, Tie & Qian, Qian & Ergu, Daji, 2022. "Regulatory technology (Reg-Tech) in financial stability supervision: Taxonomy, key methods, applications and future directions," International Review of Financial Analysis, Elsevier, vol. 80(C).
- Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Papers
2210.16042, arXiv.org.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022.
"Scaled PCA: A New Approach to Dimension Reduction,"
CEMA Working Papers
678, China Economics and Management Academy, Central University of Finance and Economics.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
- Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
- Xiaolu Wei & Hongbing Ouyang, 2023. "Forecasting Carbon Price Using Double Shrinkage Methods," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
- Li, Hong & Shi, Yanlin, 2021. "A new unique information share measure with applications on cross-listed Chinese banks," Journal of Banking & Finance, Elsevier, vol. 128(C).
- Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
- Sweder van Wijnbergen & Daniël Dimitrov, 2023.
"Macroprudential Regulation: A Risk Management Approach,"
Tinbergen Institute Discussion Papers
23-002/IV, Tinbergen Institute.
- Daniel Dimitrov & Sweder van Wijnbergen, 2023. "Macroprudential Regulation: A Risk Management Approach," Working Papers 765, DNB.
- Dimitrov, Daniel & van Wijnbergen, Sweder, 2023. "Macroprudential Regulation: A Risk Management Approach," CEPR Discussion Papers 17846, C.E.P.R. Discussion Papers.
- Luyang Chen & Markus Pelger & Jason Zhu, 2019.
"Deep Learning in Asset Pricing,"
Papers
1904.00745, arXiv.org, revised Aug 2021.
- Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
- Markus Bibinger & Christopher J. Neely & Lars Winkelmann, 2017.
"Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book,"
Working Papers
2017-12, Federal Reserve Bank of St. Louis.
- Bibinger, Markus & Neely, Christopher & Winkelmann, Lars, 2018. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," IRTG 1792 Discussion Papers 2018-055, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Bibinger, Markus & Neely, Christopher & Winkelmann, Lars, 2019. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 158-184.
- Deniz Erdemlioglu & Christopher J. Neely & Xiye Yang, 2023. "Systemic Tail Risk: High-Frequency Measurement, Evidence and Implications," Working Papers 2023-016, Federal Reserve Bank of St. Louis.
- Dinesh Gajurel & Mardi Dungey & Wenying Yao & Nagaratnam Jeyasreedharan, 2020. "Jump Risk in the US Financial Sector," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 331-349, September.
- Zhou, Dong-hai & Liu, Xiao-xing, 2023. "Do world stock markets “jump” together? A measure of high-frequency volatility risk spillover networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
- Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
- Choi, Jungjun & Yang, Xiye, 2022. "Asymptotic properties of correlation-based principal component analysis," Journal of Econometrics, Elsevier, vol. 229(1), pages 1-18.
- Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020.
"Factors That Fit the Time Series and Cross-Section of Stock Returns,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
See citations under working paper version above.
- Martin Lettau & Markus Pelger, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," NBER Working Papers 24858, National Bureau of Economic Research, Inc.
- Lettau, Martin & Pelger, Markus, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," CEPR Discussion Papers 13049, C.E.P.R. Discussion Papers.
- Pelger, Markus, 2019.
"Large-dimensional factor modeling based on high-frequency observations,"
Journal of Econometrics, Elsevier, vol. 208(1), pages 23-42.
Cited by:
- Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
- Joongyeub Yeo & George Papanicolaou, 2016. "Random matrix approach to estimation of high-dimensional factor models," Papers 1611.05571, arXiv.org, revised Nov 2017.
- Dovonon, Prosper & Taamouti, Abderrahim & Williams, Julian, 2022. "Testing the eigenvalue structure of spot and integrated covariance," Journal of Econometrics, Elsevier, vol. 229(2), pages 363-395.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Papers
2210.16042, arXiv.org.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"Estimation of large dimensional conditional factor models in finance,"
Working Papers
unige:125031, University of Geneva, Geneva School of Economics and Management.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2019. "Estimation of Large Dimensional Conditional Factor Models in Finance," Swiss Finance Institute Research Paper Series 19-46, Swiss Finance Institute.
- Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
- Li, Dan & Drovandi, Christopher & Clements, Adam, 2024. "Outlier-robust methods for forecasting realized covariance matrices," International Journal of Forecasting, Elsevier, vol. 40(1), pages 392-408.
- Xin-Bing Kong & Yong-Xin Liu & Long Yu & Peng Zhao, 2022. "Matrix Quantile Factor Model," Papers 2208.08693, arXiv.org, revised Aug 2024.
- Yuan Liao & Xiye Yang, 2017. "Uniform Inference for Characteristic Effects of Large Continuous-Time Linear Models," Papers 1711.04392, arXiv.org, revised Dec 2018.
- Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
- Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018.
"Simultaneous multiple change-point and factor analysis for high-dimensional time series,"
LSE Research Online Documents on Economics
88110, London School of Economics and Political Science, LSE Library.
- Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
- Markus Pelger & Jiacheng Zou, 2022. "Inference for Large Panel Data with Many Covariates," Papers 2301.00292, arXiv.org, revised Mar 2023.
- Noureddine Kouaissah & Amin Hocine, 2021. "Forecasting systemic risk in portfolio selection: The role of technical trading rules," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 708-729, July.
- Chen, Dachuan, 2024. "High frequency principal component analysis based on correlation matrix that is robust to jumps, microstructure noise and asynchronous observation times," Journal of Econometrics, Elsevier, vol. 240(1).
- Esparcia, Carlos & Escribano, Ana & Jareño, Francisco, 2024. "Assessing the crypto market stability after the FTX collapse: A study of high frequency volatility and connectedness," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
- Yuan Liao & Xiye Yang, 2017. "Uniform Inference for Conditional Factor Models with Instrumental and Idiosyncratic Betas," Departmental Working Papers 201711, Rutgers University, Department of Economics.
- Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
- Ruoxuan Xiong & Markus Pelger, 2019.
"Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference,"
Papers
1910.08273, arXiv.org, revised Jan 2022.
- Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Michael D. Plante, 2023. "Investing in the Batteries and Vehicles of the Future: A View Through the Stock Market," Working Papers 2314, Federal Reserve Bank of Dallas, revised 25 Mar 2024.
- Martin Lettau & Markus Pelger, 2018.
"Estimating Latent Asset-Pricing Factors,"
NBER Working Papers
24618, National Bureau of Economic Research, Inc.
- Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
- Lettau, Martin & Pelger, Markus, 2018. "Estimating Latent Asset-Pricing Factors," CEPR Discussion Papers 12926, C.E.P.R. Discussion Papers.
- Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
- Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
- Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
- Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2023. "High-dimensional estimation of quadratic variation based on penalized realized variance," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 331-359, July.
- Markus Pelger, 2020. "Understanding Systematic Risk: A High‐Frequency Approach," Journal of Finance, American Finance Association, vol. 75(4), pages 2179-2220, August.
- Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
- Esparcia, Carlos & López, Raquel, 2024. "Performance of crypto-Forex portfolios based on intraday data," Research in International Business and Finance, Elsevier, vol. 69(C).
- Choi, Jungjun & Yang, Xiye, 2022. "Asymptotic properties of correlation-based principal component analysis," Journal of Econometrics, Elsevier, vol. 229(1), pages 1-18.
- Donggyu Kim & Minseog Oh, 2024.
"Dynamic Realized Minimum Variance Portfolio Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.
- Donggyu Kim & Minseog Oh, 2023. "Dynamic Realized Minimum Variance Portfolio Models," Papers 2310.13511, arXiv.org.
- Esparcia, Carlos & Escribano, Ana & Jareño, Francisco, 2023. "Did cryptomarket chaos unleash Silvergate's bankruptcy? investigating the high-frequency volatility and connectedness behind the collapse," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
- Nan Chen & Paul Glasserman & Behzad Nouri & Markus Pelger, 2017.
"Contingent Capital, Tail Risk, and Debt-Induced Collapse,"
The Review of Financial Studies, Society for Financial Studies, vol. 30(11), pages 3921-3969.
Cited by:
- Ongena, Steven & Goncharenko, Roman & Rauf, Asad, 2018.
"The Agency of CoCos: Why Contingent Convertible Bonds Aren't for Everyone,"
CEPR Discussion Papers
13344, C.E.P.R. Discussion Papers.
- Roman Goncharenko & Steven Ongena & Asad Rauf, 2019. "The Agency of CoCos: Why Contingent Convertible Bonds Aren't for Everyone," Swiss Finance Institute Research Paper Series 19-43, Swiss Finance Institute.
- Goncharenko, Roman & Ongena, Steven & Rauf, Asad, 2021. "The agency of CoCos: Why contingent convertible bonds are not for everyone," Journal of Financial Intermediation, Elsevier, vol. 48(C).
- Borys Grochulski & Russell Wong, 2018. "Contingent Debt and Performance Pricing in an Optimal Capital Structure Model with Financial Distress and Reorganization," Working Paper 18-17, Federal Reserve Bank of Richmond.
- Mendes, Layla dos Santos & Leite, Rodrigo de Oliveira & Fajardo, José, 2022. "Do contingent convertible bonds reduce systemic risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
- Martynova, Natalya & Perotti, Enrico C., 2018.
"Convertible bonds and bank risk-taking,"
Discussion Papers
24/2018, Deutsche Bundesbank.
- Martynova, Natalya & Perotti, Enrico, 2018. "Convertible bonds and bank risk-taking," Journal of Financial Intermediation, Elsevier, vol. 35(PB), pages 61-80.
- Natalya Martynova & Enrico Perotti, 2012. "Convertible Bonds and Bank Risk-Taking," Tinbergen Institute Discussion Papers 12-106/IV/DSF41, Tinbergen Institute, revised 10 Oct 2016.
- Jang, Hyun Jin & Na, Young Hoon & Zheng, Harry, 2018. "Contingent convertible bonds with the default risk premium," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 77-93.
- Giovanni Calice & Carlo Sala & Daniele Tantari, 2020. "Contingent Convertible Bonds in Financial Networks," Papers 2009.00062, arXiv.org, revised Dec 2023.
- Niedrig, Tobias & Gründl, Helmut, 2015.
"The effects of Contingent Convertible (CoCo) bonds on insurers' capital requirements under solvency II,"
SAFE Working Paper Series
98, Leibniz Institute for Financial Research SAFE.
- Niedrig, Tobias & Gründl, Helmut, 2015. "The effects of contingent convertible (CoCo) bonds on insurers' capital requirements under Solvency II," ICIR Working Paper Series 18/14, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
- Tobias Niedrig & Helmut Gründl, 2015. "The Effects of Contingent Convertible (CoCo) Bonds on Insurers’ Capital Requirements Under Solvency II," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 40(3), pages 416-443, July.
- Gründl, Helmut & Niedrig, Tobias, 2015. "The effects of Contingent Convertible (CoCo) bonds on insurers' capital requirements under Solvency II," SAFE Policy Letters 45, Leibniz Institute for Financial Research SAFE.
- Olivier Courtois & Xiaoshan Su, 2020. "Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 477-520, December.
- Ye Li & Simon Mayer & Simon Mayer, 2021. "Money Creation in Decentralized Finance: A Dynamic Model of Stablecoin and Crypto Shadow Banking," CESifo Working Paper Series 9260, CESifo.
- Bolton, Patrick & Avdjiev, Stefan & Bogdanova, Bilyana & Jiang, Wei & Kartasheva, Anastasia, 2017.
"CoCo Issuance and Bank Fragility,"
CEPR Discussion Papers
12418, C.E.P.R. Discussion Papers.
- Stefan Avdjiev & Bilyana Bogdanova & Patrick Bolton & Wei Jiang & Anastasia Kartasheva, 2017. "CoCo Issuance and Bank Fragility," NBER Working Papers 23999, National Bureau of Economic Research, Inc.
- Stefan Avdjiev & Bilyana Bogdanova & Patrick Bolton & Wei Jiang & Anastasia Kartasheva, 2017. "CoCo issuance and bank fragility," BIS Working Papers 678, Bank for International Settlements.
- Avdjiev, Stefan & Bogdanova, Bilyana & Bolton, Patrick & Jiang, Wei & Kartasheva, Anastasia, 2020. "CoCo issuance and bank fragility," Journal of Financial Economics, Elsevier, vol. 138(3), pages 593-613.
- Delphine Boursicot & Geneviève Gauthier & Farhad Pourkalbassi, 2019. "Contingent Convertible Debt: The Impact on Equity Holders," Risks, MDPI, vol. 7(2), pages 1-35, April.
- Li, Ping & Guo, Yanhong & Meng, Hui, 2022. "The default contagion of contingent convertible bonds in financial network," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Xia, Xin & Gan, Liu, 2020. "SME financing with new credit guarantee contracts over the business cycle," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 515-538.
- Hüser, Anne-Caroline & Hałaj, Grzegorz & Kok, Christoffer & Perales, Cristian & van der Kraaij, Anton, 2018.
"The systemic implications of bail-in: A multi-layered network approach,"
Journal of Financial Stability, Elsevier, vol. 38(C), pages 81-97.
- Kok, Christoffer & Hałaj, Grzegorz & Hüser, Anne-Caroline & Perales, Cristian & van der Kraaij, Anton, 2017. "The systemic implications of bail-in: a multi-layered network approach," Working Paper Series 2010, European Central Bank.
- Chia-Chien Chang & Min-Teh Yu, 2018. "Bank Contingent Capital: Valuation and the Role of Market Discipline," Journal of Financial Services Research, Springer;Western Finance Association, vol. 54(1), pages 49-80, August.
- Philippe Oster, 2020. "Contingent Convertible bond literature review: making everything and nothing possible?," Journal of Banking Regulation, Palgrave Macmillan, vol. 21(4), pages 343-381, December.
- Himmelberg, Charles P. & Tsyplakov, Sergey, 2020. "Optimal terms of contingent capital, incentive effects, and capital structure dynamics," Journal of Corporate Finance, Elsevier, vol. 64(C).
- Naeem, Muhammad Abubakr & Shahzad, Mohammad Rahim & Karim, Sitara & Assaf, Rima, 2023. "Tail risk transmission in technology-driven markets," Global Finance Journal, Elsevier, vol. 57(C).
- Gupta, Aparna & Wang, Runzu & Lu, Yueliang, 2021. "Addressing systemic risk using contingent convertible debt – A network analysis," European Journal of Operational Research, Elsevier, vol. 290(1), pages 263-277.
- Allen N. Berger & Charles P. Himmelberg & Raluca A. Roman & Sergey Tsyplakov, 2022. "Bank bailouts, bail‐ins, or no regulatory intervention? A dynamic model and empirical tests of optimal regulation and implications for future crises," Financial Management, Financial Management Association International, vol. 51(4), pages 1031-1090, December.
- Anne G. Balter & Nikolaus Schweizer & Juan C. Vera, 2020. "Contingent Capital with Stock Price Triggers in Interbank Networks," Papers 2011.06474, arXiv.org.
- Chan, Stephanie & Wijnbergen, Sweder, 2017. "CoCo Design, Risk Shifting Incentives and Financial Fragility," ECMI Papers 12166, Centre for European Policy Studies.
- Zhao, Zhiming & Li, Shasha & Tang, Huiling, 2021. "Write-down bonds, credit risk and imperfect information," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Ongena, Steven & Goncharenko, Roman & Rauf, Asad, 2018.
"The Agency of CoCos: Why Contingent Convertible Bonds Aren't for Everyone,"
CEPR Discussion Papers
13344, C.E.P.R. Discussion Papers.