IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v229y2022i1p201-217.html
   My bibliography  Save this article

Projected estimation for large-dimensional matrix factor models

Author

Listed:
  • Yu, Long
  • He, Yong
  • Kong, Xinbing
  • Zhang, Xinsheng

Abstract

In this study, we propose a projection estimation method for large-dimensional matrix factor models with cross-sectionally spiked eigenvalues. By projecting the observation matrix onto the row or column factor space, we simplify factor analysis for matrix series to that of a lower-dimensional tensor. This method also reduces the magnitudes of the idiosyncratic error components, thereby increasing the signal-to-noise ratio, because the projection matrix linearly filters the idiosyncratic error matrix. We theoretically prove that the projected estimators of the factor loading matrices achieve faster convergence rates than existing estimators under similar conditions. Asymptotic distributions of the projected estimators are also presented. A novel iterative procedure is given to specify the pair of row and column factor numbers. Extensive numerical studies verify the empirical performance of the projection method. Two real examples in finance and macroeconomics reveal factor patterns across rows and columns, which coincide with financial, economic, or geographical interpretations.

Suggested Citation

  • Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
  • Handle: RePEc:eee:econom:v:229:y:2022:i:1:p:201-217
    DOI: 10.1016/j.jeconom.2021.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621001123
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ross, Stephen A, 1977. "The Capital Asset Pricing Model (CAPM), Short-Sale Restrictions and Related Issues," Journal of Finance, American Finance Association, vol. 32(1), pages 177-183, March.
    2. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    5. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    6. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    7. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    8. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    9. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    10. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    11. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    12. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    13. Y. Yu & T. Wang & R. J. Samworth, 2015. "A useful variant of the Davis–Kahan theorem for statisticians," Biometrika, Biometrika Trust, vol. 102(2), pages 315-323.
    14. Elynn Y. Chen & Ruey S. Tsay & Rong Chen, 2020. "Constrained Factor Models for High-Dimensional Matrix-Variate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 775-793, April.
    15. Xinbing Kong & Jiangyan Wang & Jinbao Xing & Chao Xu & Chao Ying, 2019. "Factor and Idiosyncratic Empirical Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1138-1146, July.
    16. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    17. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    18. Clifford Lam & Qiwei Yao & Neil Bathia, 2011. "Estimation of latent factors for high-dimensional time series," Biometrika, Biometrika Trust, vol. 98(4), pages 901-918.
    19. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    20. Martin Lettau & Markus Pelger, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," Review of Finance, European Finance Association, vol. 33(5), pages 2274-2325.
    21. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin-Bing Kong & Yong-Xin Liu & Long Yu & Peng Zhao, 2022. "Matrix Quantile Factor Model," Papers 2208.08693, arXiv.org, revised Aug 2024.
    2. Yang, Shuquan & Ling, Nengxiang, 2023. "Robust projected principal component analysis for large-dimensional semiparametric factor modeling," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    3. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    4. Cheng Yu & Dong Li & Feiyu Jiang & Ke Zhu, 2023. "Matrix GARCH Model: Inference and Application," Papers 2306.05169, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    2. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
    3. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    4. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    5. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    6. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    7. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    8. Li, Kunpeng & Li, Qi & Lu, Lina, 2018. "Quasi maximum likelihood analysis of high dimensional constrained factor models," Journal of Econometrics, Elsevier, vol. 206(2), pages 574-612.
    9. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    10. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    11. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
    12. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    13. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    14. Xin-Bing Kong & Yong-Xin Liu & Long Yu & Peng Zhao, 2022. "Matrix Quantile Factor Model," Papers 2208.08693, arXiv.org, revised Aug 2024.
    15. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    16. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    17. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    18. Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024. "Inferential theory for generalized dynamic factor models," Journal of Econometrics, Elsevier, vol. 239(2).
    19. Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
    20. Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.

    More about this item

    Keywords

    Matrix factor model; Vector factor model; Column covariance matrix; Row covariance matrix;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:229:y:2022:i:1:p:201-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.