Factor investing: A Bayesian hierarchical approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2021.11.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019.
"Characteristics are covariances: A unified model of risk and return,"
Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
- Bryan Kelly & Seth Pruitt & Yinan Su, 2018. "Characteristics Are Covariances: A Unified Model of Risk and Return," NBER Working Papers 24540, National Bureau of Economic Research, Inc.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Shanken, Jay, 1987. "A Bayesian approach to testing portfolio efficiency," Journal of Financial Economics, Elsevier, vol. 19(2), pages 195-215, December.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020.
"Taming the Factor Zoo: A Test of New Factors,"
Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
- Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2019. "Taming the Factor Zoo: A Test of New Factors," NBER Working Papers 25481, National Bureau of Economic Research, Inc.
- Giglio, Stefano & Feng, Guanhao & Xiu, Dacheng, 2020. "Taming the Factor Zoo: A Test of New Factors," CEPR Discussion Papers 14266, C.E.P.R. Discussion Papers.
- Avramov, Doron & Chordia, Tarun, 2006. "Predicting stock returns," Journal of Financial Economics, Elsevier, vol. 82(2), pages 387-415, November.
- Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020.
"Factors That Fit the Time Series and Cross-Section of Stock Returns,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
- Lettau, Martin & Pelger, Markus, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," CEPR Discussion Papers 13049, C.E.P.R. Discussion Papers.
- Martin Lettau & Markus Pelger, 2018. "Factors that Fit the Time Series and Cross-Section of Stock Returns," NBER Working Papers 24858, National Bureau of Economic Research, Inc.
- Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020.
"Shrinking the cross-section,"
Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
- Nagel, Stefan & Santosh, Shrihari & Kozak, Serhiy, 2017. "Shrinking the Cross Section," CEPR Discussion Papers 12463, C.E.P.R. Discussion Papers.
- Serhiy Kozak & Stefan Nagel & Shrihari Santosh, 2017. "Shrinking the Cross Section," NBER Working Papers 24070, National Bureau of Economic Research, Inc.
- Kandel, Shmuel & Stambaugh, Robert F, 1996.
"On the Predictability of Stock Returns: An Asset-Allocation Perspective,"
Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
- Shmuel Kandel & Robert F. Stambaugh, 1995. "On the Predictability of Stock Returns: An Asset-Allocation Perspective," NBER Working Papers 4997, National Bureau of Economic Research, Inc.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020.
"Dissecting Characteristics Nonparametrically,"
Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Finance, European Finance Association, vol. 33(5), pages 2326-2377.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," NBER Working Papers 23227, National Bureau of Economic Research, Inc.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2018. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 7187, CESifo.
- Joachim Freyberger & Andreas Neuhierl & Michael Weber & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," CESifo Working Paper Series 6391, CESifo.
- Pastor, Lubos & Stambaugh, Robert F., 2000.
"Comparing asset pricing models: an investment perspective,"
Journal of Financial Economics, Elsevier, vol. 56(3), pages 335-381, June.
- Lubos Pastor & Robert F. Stambaugh, "undated". "Comparing Asset Pricing Models: An Investment Perspective," Rodney L. White Center for Financial Research Working Papers 16-99, Wharton School Rodney L. White Center for Financial Research.
- Lubos Pastor & Robert F. Stambaugh, 1999. "Comparing Asset Pricing Models: An Investment Perspective," NBER Working Papers 7284, National Bureau of Economic Research, Inc.
- Luboš Pástor & Robert F. Stambaugh, 1999. "Comparing Asset Pricing Models: An Investment Perspective," CRSP working papers 497, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
- Harvey, Campbell R. & Zhou, Guofu, 1990. "Bayesian inference in asset pricing tests," Journal of Financial Economics, Elsevier, vol. 26(2), pages 221-254, August.
- Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Martin Lettau & Markus Pelger, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," Review of Finance, European Finance Association, vol. 33(5), pages 2274-2325.
- Andras Fulop & Junye Li & Jun Yu, 2015. "Self-Exciting Jumps, Learning, and Asset Pricing Implications," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 876-912.
- Doron Avramov & Tarun Chordia, 2006. "Asset Pricing Models and Financial Market Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 1001-1040.
- Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
- Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
- Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
- Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
- Polson, Nicholas G & Tew, Bernard V, 2000. "Bayesian Portfolio Selection: An Empirical Analysis of the S&P 500 Index 1970-1996," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 164-173, April.
- Huang, Dashan & Li, Jiangyuan & Wang, Liyao & Zhou, Guofu, 2020. "Time series momentum: Is it there?," Journal of Financial Economics, Elsevier, vol. 135(3), pages 774-794.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- McCulloch, Robert & Rossi, Peter E., 1991. "A bayesian approach to testing the arbitrage pricing theory," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 141-168.
- Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
- Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
- Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
- Victor DeMiguel & Alberto MartÃn-Utrera & Francisco J Nogales & Raman Uppal & Andrew KarolyiEditor, 2020.
"A Transaction-Cost Perspective on the Multitude of Firm Characteristics,"
Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
- Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal & Andrew KarolyiEditor, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," Review of Finance, European Finance Association, vol. 33(5), pages 2180-2222.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cássio Roberto de Andrade Alves & Márcio Laurini, 2023. "Estimating the Capital Asset Pricing Model with Many Instruments: A Bayesian Shrinkage Approach," Mathematics, MDPI, vol. 11(17), pages 1-20, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
- Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023.
"Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models,"
Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
- Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2020. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 118924, London School of Economics and Political Science, LSE Library.
- Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
- Guanhao Feng & Jingyu He, 2019. "Factor Investing: A Bayesian Hierarchical Approach," Papers 1902.01015, arXiv.org, revised Sep 2020.
- Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
- Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
- Rubesam, Alexandre, 2022.
"Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market,"
Emerging Markets Review, Elsevier, vol. 51(PB).
- Alexandre Rubesam, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Post-Print hal-03707365, HAL.
- Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
- Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
- van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.
- Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
- Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
- Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
- Hansen, Erwin, 2022. "Economic evaluation of asset pricing models under predictability," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 50-66.
- De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
CERGE-EI Working Papers
wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
- Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023.
"Machine-learning the skill of mutual fund managers,"
Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
- Ron Kaniel & Zihan Lin & Markus Pelger & Stijn Van Nieuwerburgh, 2022. "Machine-Learning the Skill of Mutual Fund Managers," NBER Working Papers 29723, National Bureau of Economic Research, Inc.
- Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-Learning the Skill of Mutual Fund Managers," CEPR Discussion Papers 18129, C.E.P.R. Discussion Papers.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
More about this item
Keywords
Asset allocation; Bayes; Hierarchical prior; Estimation risk; Characteristics; Macro predictors; Risk factor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:230:y:2022:i:1:p:183-200. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.