IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v611y2023ics0378437123000250.html
   My bibliography  Save this article

Does machine learning help private sectors to alarm crises? Evidence from China’s currency market

Author

Listed:
  • Wang, Peiwan
  • Zong, Lu

Abstract

With respect to a broad range of well-established early warning systems (EWSs) for financial crises, this study discusses the practical usefulness of currency early warning models in their service to the daily operation of private sectors. Based on 24-year daily and monthly data of China, a complete mixture of classic and emerging crisis early warning paradigms are examined at both the short and long predictive horizons. To answer the question whether and how machine learning algorithms contribute to the institutional assessment of currency vulnerabilities, the models are evaluated in terms of the out-of-sample crisis predictive power as well as the real-time improvements on the performance of currency portfolios. Evidences are found to support the potential of machine learning in outperforming canonical models. Nonetheless, it is stressed that in comparison to the selection of predictive mechanisms, the quantitative definition of crises, that addresses precision and robustness at the same time, is an equally important determinant for the success of an EWS. This study suggests that private sectors are more likely to be benefited from monitoring short-horizon market turmoils at daily frequency.

Suggested Citation

  • Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
  • Handle: RePEc:eee:phsmap:v:611:y:2023:i:c:s0378437123000250
    DOI: 10.1016/j.physa.2023.128470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123000250
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arturo Bris & Yrjö Koskinen & Vicente Pons, 2004. "Corporate Financial Policies and Performance around Currency Crises," The Journal of Business, University of Chicago Press, vol. 77(4), pages 749-796, October.
    2. Andrew Berg & Catherine Pattillo, 1999. "Are Currency Crises Predictable? A Test," IMF Staff Papers, Palgrave Macmillan, vol. 46(2), pages 1-1.
    3. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    4. Beckmann, Rainer, 2007. "Profitability of Western European banking systems: panel evidence on structural and cyclical determinants," Discussion Paper Series 2: Banking and Financial Studies 2007,17, Deutsche Bundesbank.
    5. Peng, Duan & Bajona, Claustre, 2008. "China's vulnerability to currency crisis: A KLR signals approach," China Economic Review, Elsevier, vol. 19(2), pages 138-151, June.
    6. Aghion, Philippe & Bacchetta, Philippe & Banerjee, Abhijit, 2004. "A corporate balance-sheet approach to currency crises," Journal of Economic Theory, Elsevier, vol. 119(1), pages 6-30, November.
    7. Ronald McKinnon & Gunther Schnabl, 2012. "China and Its Dollar Exchange Rate: A Worldwide Stabilising Influence?," The World Economy, Wiley Blackwell, vol. 35(6), pages 667-693, June.
    8. Graciela Kaminsky & Saul Lizondo & Carmen M. Reinhart, 1998. "Leading Indicators of Currency Crises," IMF Staff Papers, Palgrave Macmillan, vol. 45(1), pages 1-48, March.
    9. Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    10. Coudert, Virginie & Gex, Mathieu, 2008. "Does risk aversion drive financial crises? Testing the predictive power of empirical indicators," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 167-184, March.
    11. Frankel, Jeffrey A. & Rose, Andrew K., 1996. "Currency Crashes in Emerging Markets: Empirical Indicators," Center for International and Development Economics Research (CIDER) Working Papers 233424, University of California-Berkeley, Department of Economics.
    12. Kinkyo, Takuji, 2020. "Growing influences of the Chinese renminbi on Asian exchange rates: Evidence from a wavelet analysis of dynamic spillovers," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    13. Frankel, Jeffrey A. & Rose, Andrew K., 1996. "Currency crashes in emerging markets: An empirical treatment," Journal of International Economics, Elsevier, vol. 41(3-4), pages 351-366, November.
    14. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    15. Lestano & Jacobs, Jan & Kuper, Gerard H., 2003. "Indicators of financial crises do work! : an early-warning system for six Asian countries," CCSO Working Papers 200313, University of Groningen, CCSO Centre for Economic Research.
    16. Fatum, Rasmus & Yamamoto, Yohei & Zhu, Guozhong, 2017. "Is the Renminbi a safe haven?," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 189-202.
    17. Dawood, Mary & Horsewood, Nicholas & Strobel, Frank, 2017. "Predicting sovereign debt crises: An Early Warning System approach," Journal of Financial Stability, Elsevier, vol. 28(C), pages 16-28.
    18. Bris, Arturo & Koskinen, Yrjo, 2002. "Corporate leverage and currency crises," Journal of Financial Economics, Elsevier, vol. 63(2), pages 275-310, February.
    19. Bussiere, Matthieu & Fratzscher, Marcel, 2006. "Towards a new early warning system of financial crises," Journal of International Money and Finance, Elsevier, vol. 25(6), pages 953-973, October.
    20. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    21. BenSaïda, Ahmed, 2018. "The contagion effect in European sovereign debt markets: A regime-switching vine copula approach," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 153-165.
    22. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    23. Lel, Ugur, 2012. "Currency hedging and corporate governance: A cross-country analysis," Journal of Corporate Finance, Elsevier, vol. 18(2), pages 221-237.
    24. Candelon, Bertrand & Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2014. "Currency crisis early warning systems: Why they should be dynamic," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1016-1029.
    25. Abdul Abiad, 2007. "Early Warning Systems for Currency Crises: A Regime-Switching Approach," International Series in Operations Research & Management Science, in: Rogemar S. Mamon & Robert J. Elliott (ed.), Hidden Markov Models in Finance, chapter 10, pages 155-184, Springer.
    26. Andrew Berg & Eduardo Borensztein & Catherine Pattillo, 2005. "Assessing Early Warning Systems: How Have They Worked in Practice?," IMF Staff Papers, Palgrave Macmillan, vol. 52(3), pages 1-5.
    27. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    28. Bertrand Candelon & Elena-Ivona Dumitrescu & Christophe Hurlin, 2012. "How to Evaluate an Early-Warning System: Toward a Unified Statistical Framework for Assessing Financial Crises Forecasting Methods," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 60(1), pages 75-113, April.
    29. Yanhua Chen & Rosario N Mantegna & Athanasios A Pantelous & Konstantin M Zuev, 2018. "A dynamic analysis of S&P 500, FTSE 100 and EURO STOXX 50 indices under different exchange rates," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-40, March.
    30. Juha Tervala, 2019. "U.S. monetary policy and China's exchange rate policy during the great recession," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 113-130, January.
    31. Andreas Röthig & Willi Semmler & Peter Flaschel, 2009. "Corporate Currency Hedging and Currency Crises," Chapters, in: Andreas Pyka & Uwe Cantner & Alfred Greiner & Thomas Kuhn (ed.), Recent Advances in Neo-Schumpeterian Economics, chapter 7, Edward Elgar Publishing.
    32. Berg, Andrew & Pattillo, Catherine, 1999. "Predicting currency crises:: The indicators approach and an alternative," Journal of International Money and Finance, Elsevier, vol. 18(4), pages 561-586, August.
    33. Sandeep Patel & Asani Sarkar, 1998. "Stock market crises in developed and emerging markets," Research Paper 9809, Federal Reserve Bank of New York.
    34. Anthony Elson, 2021. "The Origins of the Global Currency Power of the US Dollar," Springer Books, in: The Global Currency Power of the US Dollar, chapter 0, pages 15-30, Springer.
    35. Li, Wei-Xuan & Chen, Clara Chia-Sheng & French, Joseph J., 2015. "Toward an early warning system of financial crises: What can index futures and options tell us?," The Quarterly Review of Economics and Finance, Elsevier, vol. 55(C), pages 87-99.
    36. Hilliard, Jimmy E, 1979. "The Relationship between Equity Indices on World Exchanges," Journal of Finance, American Finance Association, vol. 34(1), pages 103-114, March.
    37. Christofides, Charis & Eicher, Theo S. & Papageorgiou, Chris, 2016. "Did established Early Warning Signals predict the 2008 crises?," European Economic Review, Elsevier, vol. 81(C), pages 103-114.
    38. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    39. Alessi, Lucia & Detken, Carsten, 2011. "Quasi real time early warning indicators for costly asset price boom/bust cycles: A role for global liquidity," European Journal of Political Economy, Elsevier, vol. 27(3), pages 520-533, September.
    40. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
    41. Carmen M. Reinhart & Kenneth S. Rogoff, 2011. "From Financial Crash to Debt Crisis," American Economic Review, American Economic Association, vol. 101(5), pages 1676-1706, August.
    42. Masahiro Kawai, 2008. "Toward A Regional Exchange Rate Regime In East Asia," Pacific Economic Review, Wiley Blackwell, vol. 13(1), pages 83-103, February.
    43. Tanaka, Katsuyuki & Kinkyo, Takuji & Hamori, Shigeyuki, 2016. "Random forests-based early warning system for bank failures," Economics Letters, Elsevier, vol. 148(C), pages 118-121.
    44. V. Coudert & M. Gex, 2008. "Does risk aversion drive financial crises? Testing the predictive power of empirical indicators," Post-Print halshs-00321667, HAL.
    45. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    46. Edwards, Sebastian & Susmel, Raul, 2001. "Volatility dependence and contagion in emerging equity markets," Journal of Development Economics, Elsevier, vol. 66(2), pages 505-532, December.
    47. Cho, Jae-Beom & Min, Hong-Ghi & McDonald, Judith Ann, 2020. "Volatility and dynamic currency hedging," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 64(C).
    48. Mr. Abdul d Abiad, 2003. "Early Warning Systems: A Survey and a Regime-Switching Approach," IMF Working Papers 2003/032, International Monetary Fund.
    49. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    50. Markus Pelger, 2020. "Understanding Systematic Risk: A High‐Frequency Approach," Journal of Finance, American Finance Association, vol. 75(4), pages 2179-2220, August.
    51. Samitas, Aristeidis & Kampouris, Elias & Kenourgios, Dimitris, 2020. "Machine learning as an early warning system to predict financial crisis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    52. Anthony Elson, 2021. "The Global Currency Power of the US Dollar," Springer Books, Springer, number 978-3-030-83519-4, June.
    53. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    54. Reinhart, Carmen M. & Rogoff, Kenneth S., 2013. "Banking crises: An equal opportunity menace," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4557-4573.
    55. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    56. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    57. Cheng, Xin & Chen, Hongyi & Zhou, Yinggang, 2021. "Is the renminbi a safe-haven currency? Evidence from conditional coskewness and cokurtosis," Journal of International Money and Finance, Elsevier, vol. 113(C).
    58. Markus Holopainen & Peter Sarlin, 2017. "Toward robust early-warning models: a horse race, ensembles and model uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1933-1963, December.
    59. Davis, E. Philip & Karim, Dilruba, 2008. "Comparing early warning systems for banking crises," Journal of Financial Stability, Elsevier, vol. 4(2), pages 89-120, June.
    60. Asli Demirgüç-Kunt & Enrica Detragiache, 1998. "The Determinants of Banking Crises in Developing and Developed Countries," IMF Staff Papers, Palgrave Macmillan, vol. 45(1), pages 81-109, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peiwan Wang & Lu Zong & Ye Ma, 2019. "An Integrated Early Warning System for Stock Market Turbulence," Papers 1911.12596, arXiv.org.
    2. Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
    3. Rakesh Padhan & K. P. Prabheesh, 2019. "Effectiveness Of Early Warning Models: A Critical Review And New Agenda For Future Direction," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 22(4), pages 457-484, December.
    4. Sondermann, David & Zorell, Nico, 2019. "A macroeconomic vulnerability model for the euro area," Working Paper Series 2306, European Central Bank.
    5. Fu, Junhui & Zhou, Qingling & Liu, Yufang & Wu, Xiang, 2020. "Predicting stock market crises using daily stock market valuation and investor sentiment indicators," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    6. Ari, Ali, 2012. "Early warning systems for currency crises: The Turkish case," Economic Systems, Elsevier, vol. 36(3), pages 391-410.
    7. Kauko, Karlo, 2014. "How to foresee banking crises? A survey of the empirical literature," Economic Systems, Elsevier, vol. 38(3), pages 289-308.
    8. Schudel, Willem, 2015. "Shifting horizons: assessing macro trends before, during, and following systemic banking crises," Working Paper Series 1766, European Central Bank.
    9. Christofides, Charis & Eicher, Theo S. & Papageorgiou, Chris, 2016. "Did established Early Warning Signals predict the 2008 crises?," European Economic Review, Elsevier, vol. 81(C), pages 103-114.
    10. Markus Behn & Carsten Detken & Tuomas Peltonen & Willem Schudel, 2017. "Predicting Vulnerabilities in the EU Banking Sector: The Role of Global and Domestic Factors," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 147-189, December.
    11. Hamdaoui, Mekki, 2016. "Are systemic banking crises in developed and developing countries predictable?," Journal of Multinational Financial Management, Elsevier, vol. 37, pages 114-138.
    12. Honda, Jiro & Tapsoba, René & Issifou, Ismael, 2022. "When do we repair the roof? Insights from responses to fiscal crisis early warning signals," International Economics, Elsevier, vol. 172(C), pages 349-367.
    13. Ari, Ali, 2008. "An Early Warning Signals Approach for Currency Crises: The Turkish Case," MPRA Paper 25858, University Library of Munich, Germany, revised 2009.
    14. Wenting Zhang & Shigeyuki Hamori, 2020. "Do Machine Learning Techniques and Dynamic Methods Help Forecast US Natural Gas Crises?," Energies, MDPI, vol. 13(9), pages 1-22, May.
    15. El-Shagi, M. & Knedlik, T. & von Schweinitz, G., 2013. "Predicting financial crises: The (statistical) significance of the signals approach," Journal of International Money and Finance, Elsevier, vol. 35(C), pages 76-103.
    16. Adil Naamane, 2012. "Peut-on prévenir les crises financières ?," Working papers of CATT hal-01885154, HAL.
    17. Ali Ari & Raif Cergibozan, 2016. "A Comparison of Currency Crisis Dating Methods: Turkey 1990-2014," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 12(3), pages 19-37.
    18. Bussiere, Matthieu & Fratzscher, Marcel, 2006. "Towards a new early warning system of financial crises," Journal of International Money and Finance, Elsevier, vol. 25(6), pages 953-973, October.
    19. Babecký, Jan & Havránek, Tomáš & Matějů, Jakub & Rusnák, Marek & Šmídková, Kateřina & Vašíček, Bořek, 2014. "Banking, debt, and currency crises in developed countries: Stylized facts and early warning indicators," Journal of Financial Stability, Elsevier, vol. 15(C), pages 1-17.
    20. Lainà, Patrizio & Nyholm, Juho & Sarlin, Peter, 2015. "Leading indicators of systemic banking crises: Finland in a panel of EU countries," Review of Financial Economics, Elsevier, vol. 24(C), pages 18-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:611:y:2023:i:c:s0378437123000250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.