IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v43y2023i10p1469-1496.html
   My bibliography  Save this article

Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach

Author

Listed:
  • Yangyang Zhuang
  • Pan Tang

Abstract

In this study, we create a novel American double‐barrier Parisian call option contract that may be utilized as an executive option for listed companies to incentivize staff and replace the classic American option. We address the option pricing problem by developing state variables to identify the price state and using the least‐squares Monte Carlo approach. We present several Lévy processes to simulate the movement path of the underlying asset. We discover that geometric Brownian motion and normal inverse Gaussian (NIG) process have successful outcomes, and NIG process has greater calculation accuracy than variance gamma process. The barrier width and window length are positively connected with the price of an American Parisian option, whereas the strike price is negatively correlated with it. Increasing the number of discrete periods of the contract will enhance the pricing accuracy.

Suggested Citation

  • Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.
  • Handle: RePEc:wly:jfutmk:v:43:y:2023:i:10:p:1469-1496
    DOI: 10.1002/fut.22445
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22445
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc Chesney & Nikola Vasiljević, 2018. "Parisian options with jumps: a maturity–excursion randomization approach," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1887-1908, November.
    2. Céline Labart & Jérôme Lelong, 2009. "Pricing Parisian options using Laplace transforms," Post-Print hal-00776703, HAL.
    3. Dassios, Angelos & Wu, Shanle, 2011. "Brownian excursions in a corridor and related Parisian options," LSE Research Online Documents on Economics 32042, London School of Economics and Political Science, LSE Library.
    4. Chauvin, Keith W. & Shenoy, Catherine, 2001. "Stock price decreases prior to executive stock option grants," Journal of Corporate Finance, Elsevier, vol. 7(1), pages 53-76, March.
    5. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    6. Tinne Haentjens & Karel J. in 't Hout, 2015. "ADI Schemes for Pricing American Options under the Heston Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 207-237, July.
    7. Hemmer, Thomas & Kim, Oliver & Verrecchia, Robert E., 1999. "Introducing convexity into optimal compensation contracts," Journal of Accounting and Economics, Elsevier, vol. 28(3), pages 307-327, December.
    8. Angelos Dassios & Shanle Wu, 2010. "Perturbed Brownian motion and its application to Parisian option pricing," Finance and Stochastics, Springer, vol. 14(3), pages 473-494, September.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    11. Doo Ho Lee & Kilhwan Kim, 2014. "Analysis of Repairable Geo/G/1 Queues with Negative Customers," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, December.
    12. Carole Bernard & Phelim Boyle, 2011. "Monte Carlo methods for pricing discrete Parisian options," The European Journal of Finance, Taylor & Francis Journals, vol. 17(3), pages 169-196.
    13. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    14. Céline Labart & Jérôme Lelong, 2009. "Pricing Double Barrier Parisian Options Using Laplace Transforms," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 19-44.
    15. Zhu, Song-Ping & Chen, Wen-Ting, 2013. "Pricing Parisian and Parasian options analytically," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 875-896.
    16. Chen, An & Suchanecki, Michael, 2007. "Default risk, bankruptcy procedures and the market value of life insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 231-255, March.
    17. J. Anderluh & J. Weide, 2009. "Double-sided Parisian option pricing," Finance and Stochastics, Springer, vol. 13(2), pages 205-238, April.
    18. An Chen & Markus Pelger & Klaus Sandmann, 2013. "New performance-vested stock option schemes," Applied Financial Economics, Taylor & Francis Journals, vol. 23(8), pages 709-727, April.
    19. Marco Avellaneda & Lixin Wu, 1999. "Pricing Parisian-Style Options With A Lattice Method," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
    2. Dassios, Angelos & Lim, Jia Wei, 2013. "Parisian option pricing: a recursive solution for the density of the Parisian stopping time," LSE Research Online Documents on Economics 58985, London School of Economics and Political Science, LSE Library.
    3. Angelos Dassios & You You Zhang, 2016. "The joint distribution of Parisian and hitting times of Brownian motion with application to Parisian option pricing," Finance and Stochastics, Springer, vol. 20(3), pages 773-804, July.
    4. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Parisian Stopping Times under Markov Processes," Papers 2107.06605, arXiv.org.
    5. Angelos Dassios & Junyi Zhang, 2020. "Parisian Time of Reflected Brownian Motion with Drift on Rays and Its Application in Banking," Risks, MDPI, vol. 8(4), pages 1-14, December.
    6. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "Deep learning for CVA computations of large portfolios of financial derivatives," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    8. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.
    10. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    12. Song-Ping Zhu & Nhat-Tan Le & Wen-Ting Chen & Xiaoping Lu, 2015. "Pricing Parisian down-and-in options," Papers 1511.01564, arXiv.org.
    13. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
    14. Wong, Hoi Ying & Guan, Peiqiu, 2011. "An FFT-network for Lévy option pricing," Journal of Banking & Finance, Elsevier, vol. 35(4), pages 988-999, April.
    15. Weilong Fu & Ali Hirsa, 2019. "A fast method for pricing American options under the variance gamma model," Papers 1903.07519, arXiv.org.
    16. Piergiacomo Sabino, 2022. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein–Uhlenbeck Type," Risks, MDPI, vol. 10(8), pages 1-23, July.
    17. Purba Banerjee & Vasudeva Murthy & Shashi Jain, 2021. "Method of lines for valuation and sensitivities of Bermudan options," Papers 2112.01287, arXiv.org.
    18. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    19. Nicola Cantarutti & Jo~ao Guerra, 2016. "Multinomial method for option pricing under Variance Gamma," Papers 1701.00112, arXiv.org, revised Feb 2018.
    20. Cornelis S. L. de Graaf & Drona Kandhai & Christoph Reisinger, 2016. "Efficient exposure computation by risk factor decomposition," Papers 1608.01197, arXiv.org, revised Feb 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:43:y:2023:i:10:p:1469-1496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.