IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.03849.html
   My bibliography  Save this paper

Controlling for Unmeasured Confounding in Panel Data Using Minimal Bridge Functions: From Two-Way Fixed Effects to Factor Models

Author

Listed:
  • Guido Imbens
  • Nathan Kallus
  • Xiaojie Mao

Abstract

We develop a new approach for identifying and estimating average causal effects in panel data under a linear factor model with unmeasured confounders. Compared to other methods tackling factor models such as synthetic controls and matrix completion, our method does not require the number of time periods to grow infinitely. Instead, we draw inspiration from the two-way fixed effect model as a special case of the linear factor model, where a simple difference-in-differences transformation identifies the effect. We show that analogous, albeit more complex, transformations exist in the more general linear factor model, providing a new means to identify the effect in that model. In fact many such transformations exist, called bridge functions, all identifying the same causal effect estimand. This poses a unique challenge for estimation and inference, which we solve by targeting the minimal bridge function using a regularized estimation approach. We prove that our resulting average causal effect estimator is root-N consistent and asymptotically normal, and we provide asymptotically valid confidence intervals. Finally, we provide extensions for the case of a linear factor model with time-varying unmeasured confounders.

Suggested Citation

  • Guido Imbens & Nathan Kallus & Xiaojie Mao, 2021. "Controlling for Unmeasured Confounding in Panel Data Using Minimal Bridge Functions: From Two-Way Fixed Effects to Factor Models," Papers 2108.03849, arXiv.org.
  • Handle: RePEc:arx:papers:2108.03849
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.03849
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "The Augmented Synthetic Control Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1789-1803, October.
    2. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    3. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    4. Bruno Ferman, 2021. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1764-1772, October.
    5. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    6. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    7. Jushan Bai & Serena Ng, 2021. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
    8. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    9. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    10. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    11. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    12. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    13. Vivek F. Farias & Andrew A. Li & Tianyi Peng, 2021. "Learning Treatment Effects in Panels with General Intervention Patterns," Papers 2106.02780, arXiv.org, revised Mar 2023.
    14. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    15. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
    16. Wang Miao & Zhi Geng & Eric J Tchetgen Tchetgen, 2018. "Identifying causal effects with proxy variables of an unmeasured confounder," Biometrika, Biometrika Trust, vol. 105(4), pages 987-993.
    17. Ben Deaner, 2018. "Proxy Controls and Panel Data," Papers 1810.00283, arXiv.org, revised Nov 2023.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Achille Nazaret & Claudia Shi & David M. Blei, 2023. "On the Misspecification of Linear Assumptions in Synthetic Control," Papers 2302.12777, arXiv.org.
    2. Claudia Shi & Dhanya Sridhar & Vishal Misra & David M. Blei, 2021. "On the Assumptions of Synthetic Control Methods," Papers 2112.05671, arXiv.org, revised Dec 2021.
    3. Guido Imbens & Nathan Kallus & Xiaojie Mao & Yuhao Wang, 2022. "Long-term Causal Inference Under Persistent Confounding via Data Combination," Papers 2202.07234, arXiv.org, revised Aug 2024.
    4. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    5. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
    6. Anish Agarwal & Vasilis Syrgkanis, 2022. "Synthetic Blip Effects: Generalizing Synthetic Controls for the Dynamic Treatment Regime," Papers 2210.11003, arXiv.org.
    7. Nathan Kallus & Miruna Oprescu, 2022. "Robust and Agnostic Learning of Conditional Distributional Treatment Effects," Papers 2205.11486, arXiv.org, revised Feb 2023.
    8. Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
    9. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    2. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    4. Zongwu Cai & Ying Fang & Ming Lin & Zixuan Wu, 2023. "A Quasi Synthetic Control Method for Nonlinear Models With High-Dimensional Covariates," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202305, University of Kansas, Department of Economics, revised Aug 2023.
    5. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    6. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    7. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    8. Luis Costa & Vivek F. Farias & Patricio Foncea & Jingyuan (Donna) Gan & Ayush Garg & Ivo Rosa Montenegro & Kumarjit Pathak & Tianyi Peng & Dusan Popovic, 2023. "Generalized Synthetic Control for TestOps at ABI: Models, Algorithms, and Infrastructure," Interfaces, INFORMS, vol. 53(5), pages 336-349, September.
    9. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    10. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    11. Michał Marcin Kobierecki & Michał Pierzgalski, 2022. "Sports Mega-Events and Economic Growth: A Synthetic Control Approach," Journal of Sports Economics, , vol. 23(5), pages 567-597, June.
    12. Bai, Jushan & Wang, Peng, 2024. "Causal inference using factor models," MPRA Paper 120585, University Library of Munich, Germany.
    13. Stefano, Roberta di & Mellace, Giovanni, 2020. "The inclusive synthetic control method," Discussion Papers on Economics 14/2020, University of Southern Denmark, Department of Economics.
    14. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    15. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    16. Timo Schenk, 2023. "Time-Weighted Difference-in-Differences: Accounting for Common Factors in Short T Panels," Tinbergen Institute Discussion Papers 23-004/III, Tinbergen Institute.
    17. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    18. Alberto Abadie & Jaume Vives-i-Bastida, 2022. "Synthetic Controls in Action," Papers 2203.06279, arXiv.org.
    19. repec:ags:aaea22:335971 is not listed on IDEAS
    20. Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
    21. Jungjun Choi & Ming Yuan, 2023. "Matrix Completion When Missing Is Not at Random and Its Applications in Causal Panel Data Models," Papers 2308.02364, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.03849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.