IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i10p463-d1497914.html
   My bibliography  Save this article

Asset Returns: Reimagining Generative ESG Indexes and Market Interconnectedness

Author

Listed:
  • Gordon Dash

    (Finance Area, College of Business and Interdisciplinary Neuroscience Program, University of Rhode Island, 7 Lippitt Road, Kingston, RI 02881, USA)

  • Nina Kajiji

    (Department of Computer Science and Statistics, College of Arts and Sciences, University of Rhode Island, 9 Greenhouse Road, Kingston, RI 02881, USA
    The NKD-Group, Inc., 777 Smith Street, Providence, RI 02908, USA)

  • Bruno G. Kamdem

    (Department of Business Management, School of Business, SUNY Farmingdale, 2350 Broadhollow Road, Farmingdale, NY11735, USA)

Abstract

Financial economists have long studied factors related to risk premiums, pricing biases, and diversification impediments. This study examines the relationship between a firm’s commitment to environmental, social, and governance principles (ESGs) and asset market returns. We incorporate an algorithmic protocol to identify three nonobservable but pervasive E, S, and G time-series factors to meet the study’s objectives. The novel factors were tested for information content by constructing a six-factor Fama and French model following the imposition of the isolation and disentanglement algorithm. Realizing that nonlinear relationships characterize models incorporating both observable and nonobservable factors, the Fama and French model statement was estimated using an enhanced shallow-learning neural network. Finally, as a post hoc measure, we integrated explainable AI (XAI) to simplify the machine learning outputs. Our study extends the literature on the disentanglement of investment factors across two dimensions. We first identify new time-series-based E, S, and G factors. Second, we demonstrate how machine learning can be used to model asset returns, considering the complex interconnectedness of sustainability factors. Our approach is further supported by comparing neural-network-estimated E, S, and G weights with London Stock Exchange ESG ratings.

Suggested Citation

  • Gordon Dash & Nina Kajiji & Bruno G. Kamdem, 2024. "Asset Returns: Reimagining Generative ESG Indexes and Market Interconnectedness," JRFM, MDPI, vol. 17(10), pages 1-21, October.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:463-:d:1497914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/10/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/10/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    2. Alex Chinco & Samuel M. Hartzmark & Abigail B. Sussman, 2022. "A New Test of Risk Factor Relevance," Journal of Finance, American Finance Association, vol. 77(4), pages 2183-2238, August.
    3. Martin Lettau & Markus Pelger, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," Review of Finance, European Finance Association, vol. 33(5), pages 2274-2325.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    2. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    3. Shi, Qi, 2023. "The RP-PCA factors and stock return predictability: An aligned approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    4. Mikhail Chernov & Magnus Dahlquist & Lars Lochstoer, 2023. "Pricing Currency Risks," Journal of Finance, American Finance Association, vol. 78(2), pages 693-730, April.
    5. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    6. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    7. Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
    8. Cheng, Mingmian & Liao, Yuan & Yang, Xiye, 2023. "Uniform predictive inference for factor models with instrumental and idiosyncratic betas," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Lettau, Martin & Pelger, Markus, 2020. "Estimating latent asset-pricing factors," Journal of Econometrics, Elsevier, vol. 218(1), pages 1-31.
    10. Feng, Guanhao & He, Jingyu, 2022. "Factor investing: A Bayesian hierarchical approach," Journal of Econometrics, Elsevier, vol. 230(1), pages 183-200.
    11. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    12. Wei Liu & James W. Kolari, 2022. "Multifactor Market Indexes," JRFM, MDPI, vol. 15(4), pages 1-26, March.
    13. Matthew F. Dixon & Nicholas G. Polson & Kemen Goicoechea, 2022. "Deep Partial Least Squares for Empirical Asset Pricing," Papers 2206.10014, arXiv.org.
    14. Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
    15. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
    16. Neuhierl, Andreas & Varneskov, Rasmus T., 2021. "Frequency dependent risk," Journal of Financial Economics, Elsevier, vol. 140(2), pages 644-675.
    17. Kaniel, Ron & Lin, Zihan & Pelger, Markus & Van Nieuwerburgh, Stijn, 2023. "Machine-learning the skill of mutual fund managers," Journal of Financial Economics, Elsevier, vol. 150(1), pages 94-138.
    18. Choi, In & Lin, Rui & Shin, Yongcheol, 2023. "Canonical correlation-based model selection for the multilevel factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
    19. Son, Bumho & Lee, Jaewook, 2022. "Graph-based multi-factor asset pricing model," Finance Research Letters, Elsevier, vol. 44(C).
    20. van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:10:p:463-:d:1497914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.