IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.05381.html
   My bibliography  Save this paper

Dirichlet policies for reinforced factor portfolios

Author

Listed:
  • Eric Andr'e
  • Guillaume Coqueret

Abstract

This article aims to combine factor investing and reinforcement learning (RL). The agent learns through sequential random allocations which rely on firms' characteristics. Using Dirichlet distributions as the driving policy, we derive closed forms for the policy gradients and analytical properties of the performance measure. This enables the implementation of REINFORCE methods, which we perform on a large dataset of US equities. Across a large range of parametric choices, our result indicates that RL-based portfolios are very close to the equally-weighted (1/N) allocation. This implies that the agent learns to be *agnostic* with regard to factors, which can partly be explained by cross-sectional regressions showing a strong time variation in the relationship between returns and firm characteristics.

Suggested Citation

  • Eric Andr'e & Guillaume Coqueret, 2020. "Dirichlet policies for reinforced factor portfolios," Papers 2011.05381, arXiv.org, revised Jun 2021.
  • Handle: RePEc:arx:papers:2011.05381
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.05381
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
    2. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    3. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    4. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2019. "Deep Reinforcement Learning for Trading," Papers 1911.10107, arXiv.org.
    5. Tarun Chordia & Bhaskaran Swaminathan, 2000. "Trading Volume and Cross‐Autocorrelations in Stock Returns," Journal of Finance, American Finance Association, vol. 55(2), pages 913-935, April.
    6. Ball, Ray & Brown, Philip, 2019. "Ball and Brown (1968) after fifty years," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 410-431.
    7. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    8. Basu, Sanjoy, 1983. "The relationship between earnings' yield, market value and return for NYSE common stocks : Further evidence," Journal of Financial Economics, Elsevier, vol. 12(1), pages 129-156, June.
    9. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    10. Daniel, Kent & Titman, Sheridan, 1997. "Evidence on the Characteristics of Cross Sectional Variation in Stock Returns," Journal of Finance, American Finance Association, vol. 52(1), pages 1-33, March.
    11. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    12. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    13. Ball, R & Brown, P, 1968. "Empirical Evaluation Of Accounting Income Numbers," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 159-178.
    14. Sergey Sosnovskiy, 2015. "On financial applications of the two-parameter Poisson-Dirichlet distribution," Papers 1501.01954, arXiv.org, revised Jul 2015.
    15. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    16. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    17. Bertrand Maillet & Sessi Tokpavi & Benoît Vaucher, 2015. "Global minimum variance portfolio optimisation under some model risk : A robust regression-based approach," Post-Print hal-02312329, HAL.
    18. Ralph S. J. Koijen & Motohiro Yogo, 2019. "A Demand System Approach to Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 127(4), pages 1475-1515.
    19. Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
    20. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    21. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    22. Yoshiharu Sato, 2019. "Model-Free Reinforcement Learning for Financial Portfolios: A Brief Survey," Papers 1904.04973, arXiv.org, revised May 2019.
    23. Niklas Pfister & Peter Bühlmann & Jonas Peters, 2019. "Invariant Causal Prediction for Sequential Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1264-1276, July.
    24. Han, Yufeng & Yang, Ke & Zhou, Guofu, 2013. "A New Anomaly: The Cross-Sectional Profitability of Technical Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1433-1461, October.
    25. Laszlo F. Korsos, 2013. "The Dirichlet Portfolio Model: Uncovering the Hidden Composition of Hedge Fund Investments," Papers 1306.0938, arXiv.org.
    26. Litzenberger, Robert H & Ramaswamy, Krishna, 1982. "The Effects of Dividends on Common Stock Prices: Tax Effects or Information Effects?," Journal of Finance, American Finance Association, vol. 37(2), pages 429-443, May.
    27. Michael J. Cooper & Huseyin Gulen & Michael J. Schill, 2008. "Asset Growth and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1609-1651, August.
    28. Pflug, Georg Ch. & Pichler, Alois & Wozabal, David, 2012. "The 1/N investment strategy is optimal under high model ambiguity," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 410-417.
    29. repec:bla:jfinan:v:53:y:1998:i:6:p:2029-2057 is not listed on IDEAS
    30. repec:bla:jfinan:v:43:y:1988:i:2:p:507-28 is not listed on IDEAS
    31. repec:dau:papers:123456789/14735 is not listed on IDEAS
    32. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    33. Manuel Ammann & Guillaume Coqueret & Jan-Philip Schade, 2016. "Characteristics-based portfolio choice with leverage constraints," Post-Print hal-02009129, HAL.
    34. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    35. Manuel Ammann & Guillaume Coqueret & Jan-Philip Schade, 2016. "Characteristics-based portfolio choice with leverage constraints," Post-Print hal-02312221, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    2. Guillaume Coqueret, 2022. "Characteristics-driven returns in equilibrium," Papers 2203.07865, arXiv.org.
    3. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    4. Baba-Yara, Fahiz & Boons, Martijn & Tamoni, Andrea, 2024. "Persistent and transitory components of firm characteristics: Implications for asset pricing," Journal of Financial Economics, Elsevier, vol. 154(C).
    5. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.
    6. Tony Guida & Guillaume Coqueret, 2019. "Ensemble Learning Applied to Quant Equity: Gradient Boosting in a Multifactor Framework," Post-Print hal-02311104, HAL.
    7. Luyang Chen & Markus Pelger & Jason Zhu, 2024. "Deep Learning in Asset Pricing," Management Science, INFORMS, vol. 70(2), pages 714-750, February.
    8. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Annals of Operations Research, Springer, vol. 288(1), pages 181-221, May.
    9. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    10. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    11. Andreas Neuhierl & Michael Weber & Michael Weber, 2017. "Monetary Momentum," CESifo Working Paper Series 6648, CESifo.
    12. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    13. Ray Ball & Gil Sadka & Ayung Tseng, 2022. "Using accounting earnings and aggregate economic indicators to estimate firm-level systematic risk," Review of Accounting Studies, Springer, vol. 27(2), pages 607-646, June.
    14. Calvet, Laurent E. & Betermier, Sebastien & Jo, Evan, 2019. "A Supply and Demand Approach to Equity Pricing," CEPR Discussion Papers 13974, C.E.P.R. Discussion Papers.
    15. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
    16. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    17. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    18. Adam Zaremba, 2019. "The Cross Section of Country Equity Returns: A Review of Empirical Literature," JRFM, MDPI, vol. 12(4), pages 1-26, October.
    19. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    20. Neuhierl, Andreas & Varneskov, Rasmus T., 2021. "Frequency dependent risk," Journal of Financial Economics, Elsevier, vol. 140(2), pages 644-675.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.05381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.