Heterogeneous Treatment Effects in Panel Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Laurent Gobillon & Thierry Magnac, 2016.
"Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls,"
The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," IDEI Working Papers 786, Institut d'Économie Industrielle (IDEI), Toulouse.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," TSE Working Papers 13-419, Toulouse School of Economics (TSE).
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE-Ecole d'économie de Paris (Postprint) halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Control," CESifo Working Paper Series 5077, CESifo.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," IZA Discussion Papers 7493, Institute of Labor Economics (IZA).
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Working Papers halshs-00849071, HAL.
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Post-Print halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE Working Papers halshs-00849071, HAL.
- Magnac, Thierry & Gobillon, Laurent, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," CEPR Discussion Papers 10253, C.E.P.R. Discussion Papers.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021.
"Matrix Completion Methods for Causal Panel Data Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2017. "Matrix Completion Methods for Causal Panel Data Models," Papers 1710.10251, arXiv.org, revised Apr 2022.
- Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2018. "Matrix Completion Methods for Causal Panel Data Models," NBER Working Papers 25132, National Bureau of Economic Research, Inc.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Ruoxuan Xiong & Susan Athey & Mohsen Bayati & Guido Imbens, 2019.
"Optimal Experimental Design for Staggered Rollouts,"
Papers
1911.03764, arXiv.org, revised Sep 2023.
- Athey, Susan & Imbens, Guido W. & Bayati, Mohsen, 2019. "Optimal Experimental Design for Staggered Rollouts," Research Papers 3837, Stanford University, Graduate School of Business.
- Dylan J. Foster & Vasilis Syrgkanis, 2019. "Orthogonal Statistical Learning," Papers 1901.09036, arXiv.org, revised Jun 2023.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
- Jushan Bai & Serena Ng, 2021.
"Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
- Jushan Bai & Serena Ng, 2019. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Papers 1910.06677, arXiv.org, revised Aug 2021.
- Devroye, Luc P., 1977. "A uniform bound for the deviation of empirical distribution functions," Journal of Multivariate Analysis, Elsevier, vol. 7(4), pages 594-597, December.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
- Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Valente, Marica, 2023.
"Policy evaluation of waste pricing programs using heterogeneous causal effect estimation,"
Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
- Marica Valente, 2020. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Papers 2010.01105, arXiv.org, revised Nov 2022.
- Marica Valente, 2021. "Policy Evaluation of Waste Pricing Programs Using Heterogeneous Causal Effect Estimation," Discussion Papers of DIW Berlin 1980, DIW Berlin, German Institute for Economic Research.
- Guido W. Imbens, 2020.
"Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
- Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022.
"The effect of COVID certificates on vaccine uptake, health outcomes, and the economy,"
Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Miquel Oliu-Barton & Bary S R Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B Wolff, 2022. "The Effect of COVID Certificates on Vaccine Uptake, Health Outcomes, and the Economy," SciencePo Working papers Main hal-03813557, HAL.
- Miquel Oliu-Barton & Bary S R Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B Wolff, 2022. "The Effect of COVID Certificates on Vaccine Uptake, Health Outcomes, and the Economy," PSE-Ecole d'économie de Paris (Postprint) hal-03813557, HAL.
- Miquel Oliu-Barton & Bary S R Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B Wolff, 2022. "The Effect of COVID Certificates on Vaccine Uptake, Health Outcomes, and the Economy," Post-Print hal-03813557, HAL.
- Miruna Oprescu & Vasilis Syrgkanis & Zhiwei Steven Wu, 2018. "Orthogonal Random Forest for Causal Inference," Papers 1806.03467, arXiv.org, revised Sep 2019.
- Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
- Alberto Abadie & Anish Agarwal & Raaz Dwivedi & Abhin Shah, 2024. "Doubly Robust Inference in Causal Latent Factor Models," Papers 2402.11652, arXiv.org, revised Oct 2024.
- David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
- Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
- Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
- Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
- Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024.
"Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Susan Athey & Guido W. Imbens & Jonas Metzger & Evan M. Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," NBER Working Papers 26566, National Bureau of Economic Research, Inc.
- Susan Athey & Guido Imbens & Jonas Metzger & Evan Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," Papers 1909.02210, arXiv.org, revised Jul 2020.
- Vivek F. Farias & Andrew A. Li & Tianyi Peng, 2021. "Learning Treatment Effects in Panels with General Intervention Patterns," Papers 2106.02780, arXiv.org, revised Mar 2023.
- Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-07-22 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.05633. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.