IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/126151.html
   My bibliography  Save this paper

Bayesian solutions for the factor zoo: we just ran two quadrillion models

Author

Listed:
  • Bryzgalova, Svetlana
  • Huang, Jiantao
  • Julliard, Christian

Abstract

We propose a novel framework for analyzing linear asset pricing models: simple, robust, and applicable to high-dimensional problems. For a (potentially misspecified) stand-alone model, it provides reliable price of risk estimates for both tradable and nontradable factors, and detects those weakly identified. For competing factors and (possibly nonnested) models, the method automatically selects the best specification—if a dominant one exists—or provides a Bayesian model averaging–stochastic discount factor (BMA-SDF), if there is no clear winner. We analyze 2.25 quadrillion models generated by a large set of factors and find that the BMA-SDF outperforms existing models in- and out-of-sample.

Suggested Citation

  • Bryzgalova, Svetlana & Huang, Jiantao & Julliard, Christian, 2023. "Bayesian solutions for the factor zoo: we just ran two quadrillion models," LSE Research Online Documents on Economics 126151, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:126151
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/126151/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • M40 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - General
    • F3 - International Economics - - International Finance
    • G3 - Financial Economics - - Corporate Finance and Governance
    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:126151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.