My bibliography
Save this item
Google Econometrics and Unemployment Forecasting
Citations
Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- Measuring unemployment with Google
by Economic Logician in Economic Logic on 2009-07-01 13:02:00
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gutiérrez, Antonio, 2023. "La brecha de género en el emprendimiento y la cultura emprendedora: Evidencia con Google Trends [Entrepreneurship gender gap and entrepreneurial culture: Evidence from Google Trends]," MPRA Paper 115876, University Library of Munich, Germany.
- Christian Hutter & Enzo Weber, 2015.
"Constructing a new leading indicator for unemployment from a survey among German employment agencies,"
Applied Economics, Taylor & Francis Journals, vol. 47(33), pages 3540-3558, July.
- Hutter, Christian & Weber, Enzo, 2013. "Constructing a new leading indicator for unemployment from a survey among German employment agencies," IAB-Discussion Paper 201317, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Chi, Tsung-Li & Liu, Hung-Tsen & Chang, Chia-Chien, 2023. "Hedging performance using google Trends–Evidence from the indian forex options market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 107-123.
- Pete Richardson, 2018. "Nowcasting and the Use of Big Data in Short-Term Macroeconomic Forecasting: A Critical Review," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 505-506, pages 65-87.
- Artem Meshcheryakov & Stoyu I Ivanov, 2017. "Investor's sentiment in predicting the Effective Federal Funds Rate," Economics Bulletin, AccessEcon, vol. 37(4), pages 2767-2796.
- Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
- Zhongchen Song & Tom Coupé, 2023.
"Predicting Chinese consumption series with Baidu,"
Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
- Zhongchen Song & Tom Coupé, 2022. "Predicting Chinese consumption series with Baidu," Working Papers in Economics 22/19, University of Canterbury, Department of Economics and Finance.
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021.
"COVID-19, lockdowns and well-being: Evidence from Google Trends,"
Journal of Public Economics, Elsevier, vol. 193(C).
- Brodeur, Abel & Clark, Andrew E. & Flèche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," IZA Discussion Papers 13204, Institute of Labor Economics (IZA).
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2021. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," PSE-Ecole d'économie de Paris (Postprint) halshs-03029872, HAL.
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," GLO Discussion Paper Series 552, Global Labor Organization (GLO).
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2021. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," Post-Print halshs-03029872, HAL.
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2020. "Covid-19, lockdowns and well-being: evidence from Google trends," CEP Discussion Papers dp1693, Centre for Economic Performance, LSE.
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, lockdowns and well-being: evidence from Google Trends," LSE Research Online Documents on Economics 108456, London School of Economics and Political Science, LSE Library.
- Abel Brodeur & Andrew Clark & Sarah Fleche & Nattavudh Powdthavee, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," Working Papers 2004E, University of Ottawa, Department of Economics.
- John W Ayers & Kurt Ribisl & John S Brownstein, 2011. "Using Search Query Surveillance to Monitor Tax Avoidance and Smoking Cessation following the United States' 2009 “SCHIP” Cigarette Tax Increase," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-7, March.
- Chien-jung Ting & Yi-Long Hsiao & Rui-jun Su, 2022. "Application of the Real-Time Tourism Data in Nowcasting the Service Consumption in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(4), pages 1-4.
- Andree Ehlert & Jan Seidel & Ursula Weisenfeld, 2020. "Trouble on my mind: the effect of catastrophic events on people’s worries," Empirical Economics, Springer, vol. 59(2), pages 951-975, August.
- Grzegorz Michal Bulczak, 2021. "Use of Google Trends to Predict the Real Estate Market: Evidence from the United Kingdom," International Real Estate Review, Global Social Science Institute, vol. 24(4), pages 613-631.
- repec:zbw:rwirep:0382 is not listed on IDEAS
- Jorge M. Agüero & Trinidad Beleche, 2016. "Health Shocks and the Long-Lasting Change in Health Behaviors: Evidence from Mexico," Working papers 2016-26, University of Connecticut, Department of Economics.
- Chun Li & Jianhua He & Xingwu Duan, 2020. "The Relationship Exploration between Public Migration Attention and Population Migration from a Perspective of Search Query," IJERPH, MDPI, vol. 17(7), pages 1-18, April.
- repec:spo:wpmain:info:hdl:2441/63csdfkqvu9nfanvuffe3qk8r6 is not listed on IDEAS
- Claveria, Oscar, 2019.
"Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations,"
Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
- Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
- Nathan, Max & Rosso, Anna, 2015.
"Mapping digital businesses with big data: Some early findings from the UK,"
Research Policy, Elsevier, vol. 44(9), pages 1714-1733.
- Nathan, Max & Rosso, Anna, 2015. "Mapping digital businesses with big data: some early findings from the UK," LSE Research Online Documents on Economics 65211, London School of Economics and Political Science, LSE Library.
- Tong Liu & Guojun He & Alexis Lau, 2018. "Avoidance behavior against air pollution: evidence from online search indices for anti-PM2.5 masks and air filters in Chinese cities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 325-363, April.
- Oestmann Marco & Bennöhr Lars, 2015.
"Determinants of house price dynamics. What can we learn from search engine data?,"
Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
- Bennöhr, Lars & Oestmann, Marco, 2014. "Determinants of house price dynamics. What can we learn from search engine data?," Working Paper 153/2014, Helmut Schmidt University, Hamburg.
- Oestmann, Marco & Bennöhr, Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113198, Verein für Socialpolitik / German Economic Association.
- Brian Fabo & Miroslav Beblavý & Karolien Lenaerts, 2017.
"The importance of foreign language skills in the labour markets of Central and Eastern Europe: assessment based on data from online job portals,"
Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(3), pages 487-508, August.
- Beblavý, Miroslav & Fabo, Brian & Lenaerts, Karolien, 2016. "The Importance of Foreign Language Skills in the Labour Markets of Central and Eastern Europe: An assessment based on data from online job portals," CEPS Papers 11264, Centre for European Policy Studies.
- Jorge M. Agüero, 2019. "Information and Behavioral Responses with More than One Agent: The Case of Domestic Violence Awareness Campaigns," Working papers 2019-04, University of Connecticut, Department of Economics.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2015.
"Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries,"
PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
- Pavlicek, Jaroslav & Kristoufek, Ladislav, 2015. "Nowcasting unemployment rates with Google searches: Evidence from the Visegrad Group countries," FinMaP-Working Papers 34, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Juan Camilo Anzoátegui-Zapata & Juan Camilo Galvis-Ciro, 2020. "Disagreements in Consumer Inflation Expectations: Empirical Evidence for a Latin American Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 16(2), pages 99-122, November.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015.
"The internet as a data source for advancement in social sciences,"
International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The Internet as a Data Source for Advancement in Social Sciences," RatSWD Working Papers 248, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2015. "The Internet as a Data Source for Advancement in Social Sciences," IZA Discussion Papers 8899, Institute of Labor Economics (IZA).
- Nathan, Max & Rosso, Anna, 2014.
"Mapping information economy businesses with big data: findings from the UK,"
LSE Research Online Documents on Economics
60615, London School of Economics and Political Science, LSE Library.
- Max Nathan & Anna Rosso, 2014. "Mapping Information Economy Business with Big Data: Findings from the UK," National Institute of Economic and Social Research (NIESR) Discussion Papers 442, National Institute of Economic and Social Research.
- Monokroussos, George & Zhao, Yongchen, 2020.
"Nowcasting in real time using popularity priors,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 1173-1180.
- Monokroussos, George, 2015. "Nowcasting in Real Time Using Popularity Priors," MPRA Paper 68594, University Library of Munich, Germany.
- George Monokroussos & Yongchen Zhao, 2020. "Nowcasting in Real Time Using Popularity Priors," Working Papers 2020-01, Towson University, Department of Economics, revised Feb 2020.
- van der Wielen, Wouter & Barrios, Salvador, 2021.
"Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU,"
Journal of Economics and Business, Elsevier, vol. 115(C).
- VAN DER WIELEN Wouter & BARRIOS Salvador, 2020. "Fear and Employment During the COVID Pandemic: Evidence from Search Behaviour in the EU," JRC Working Papers on Taxation & Structural Reforms 2020-08, Joint Research Centre.
- Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
- David Kohns & Arnab Bhattacharjee, 2020.
"Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model,"
Papers
2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021.
"Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures,"
Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
- Bonacini, Luca & Gallo, Giovanni & Patriarca, Fabrizio, 2020. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," GLO Discussion Paper Series 534 [pre.], Global Labor Organization (GLO).
- David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
- Caprotti, Federico, 2016. "Defining a new sector in the green economy: Tracking the techno-cultural emergence of the cleantech sector, 1990–2010," Technology in Society, Elsevier, vol. 46(C), pages 80-89.
- Marta Crispino & Vincenzo Mariani, 2023. "A tool to nowcast tourist overnight stays with payment data and complementary indicators," Questioni di Economia e Finanza (Occasional Papers) 746, Bank of Italy, Economic Research and International Relations Area.
- Semen Son-Turan, 2016. "The Impact of Investor Sentiment on the "Leverage Effect"," International Econometric Review (IER), Econometric Research Association, vol. 8(1), pages 4-18, April.
- David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
- Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
- Torsten Schmidt & Simeon Vosen, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 0382, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
- Bentzen, Jeanet Sinding, 2021.
"In crisis, we pray: Religiosity and the COVID-19 pandemic,"
Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
- Bentzen, Jeanet, 2020. "In Crisis, We Pray: Religiosity and the COVID-19 Pandemic," CEPR Discussion Papers 14824, C.E.P.R. Discussion Papers.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015.
"Forecasting German car sales using Google data and multivariate models,"
International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
- Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German Car Sales Using Google Data and Multivariate Models," MPRA Paper 67110, University Library of Munich, Germany.
- Sebastian Schmitz, 2019. "The Effects of Germany's Statutory Minimum Wage on Employment and Welfare Dependency," German Economic Review, Verein für Socialpolitik, vol. 20(3), pages 330-355, August.
- repec:diw:diwwpp:dp1036 is not listed on IDEAS
- Han Wang & Geng Peng & Benfu Lv, 2018. "Effect of Retail Investor Attention on Chinas A-Share Market Under a Strengthening Financial Regulatory Policy," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 8(10), pages 1274-1297, October.
- repec:zbw:rwirep:0155 is not listed on IDEAS
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Melody Y. Huang & Randall R. Rojas & Patrick D. Convery, 2020. "Forecasting stock market movements using Google Trend searches," Empirical Economics, Springer, vol. 59(6), pages 2821-2839, December.
- de Pedraza, Pablo & Vollbracht, Ian, 2020. "The Semicircular Flow of the Data Economy and the Data Sharing Laffer curve," GLO Discussion Paper Series 515, Global Labor Organization (GLO).
- Blanchflower, David G. & Bryson, Alex, 2021.
"The Economics of Walking About and Predicting Unemployment,"
GLO Discussion Paper Series
922, Global Labor Organization (GLO).
- David G. Blanchflower & Alex Bryson, 2021. "The Economics of Walking About and Predicting Unemployment," NBER Working Papers 29172, National Bureau of Economic Research, Inc.
- David G. Blanchflower & Alex Bryson, 2021. "The Economics of Walking About and Predicting Unemployment," DoQSS Working Papers 21-24, Quantitative Social Science - UCL Social Research Institute, University College London.
- Park, Sungjun & Kim, Jinsoo, 2018. "The effect of interest in renewable energy on US household electricity consumption: An analysis using Google Trends data," Renewable Energy, Elsevier, vol. 127(C), pages 1004-1010.
- Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
- Christoph Safferling & Aaron Lowen, 2011. "Economics in the Kingdom of Loathing: Analysis of Virtual Market Data," Working Paper Series of the Department of Economics, University of Konstanz 2011-30, Department of Economics, University of Konstanz.
- Karaman Örsal, Deniz Dilan, 2021. "Onlinedaten und Konsumentscheidungen: Voraussagen anhand von Daten aus Social Media und Suchmaschinen," Edition HWWI: Chapters, in: Straubhaar, Thomas (ed.), Neuvermessung der Datenökonomie, volume 6, pages 157-172, Hamburg Institute of International Economics (HWWI).
- Böhme, Marcus H. & Gröger, André & Stöhr, Tobias, 2020. "Searching for a better life: Predicting international migration with online search keywords," Journal of Development Economics, Elsevier, vol. 142(C).
- Nagao, Shintaro & Takeda, Fumiko & Tanaka, Riku, 2019. "Nowcasting of the U.S. unemployment rate using Google Trends," Finance Research Letters, Elsevier, vol. 30(C), pages 103-109.
- Nikos Askitas & Klaus F. Zimmermann, 2009.
"Prognosen aus dem Internet: weitere Erholung am Arbeitsmarkt erwartet,"
DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(25), pages 402-408.
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Prognosen aus dem Internet: Weitere Erholung am Arbeitsmarkt erwartet," IZA Standpunkte 13, Institute of Labor Economics (IZA).
- Fabio Milani, 2021.
"COVID-19 outbreak, social response, and early economic effects: a global VAR analysis of cross-country interdependencies,"
Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 223-252, January.
- Milani, Fabio, 2020. "COVID-19 Outbreak, Social Response, and Early Economic Effects: A Global VAR Analysis of Cross-Country Interdependencies," GLO Discussion Paper Series 626, Global Labor Organization (GLO).
- Fabio Milani, 2020. "Covid-19 Outbreak, Social Response, and Early Economic Effects: A Global VAR Analysis of Cross-Country Interdependencies," CESifo Working Paper Series 8518, CESifo.
- Fabio Milani, 2020. "COVID-19 Outbreak, Social Response, and Early Economic Effects: A Global VAR Analysis of Cross-Country Interdependencies," Working Papers 192004, University of California-Irvine, Department of Economics.
- Agüero, Jorge M. & Beleche, Trinidad, 2017. "Health shocks and their long-lasting impact on health behaviors: Evidence from the 2009 H1N1 pandemic in Mexico," Journal of Health Economics, Elsevier, vol. 54(C), pages 40-55.
- Correa, Alexander, 2021. "Prediciendo la llegada de turistas a Colombia a partir de los criterios de Google Trends," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue No. 95, pages 105-134, July.
- Kholodilin, Konstantin A. & Siliverstovs, Boriss, 2012.
"Measuring regional inequality by internet car price advertisements: Evidence for Germany,"
Economics Letters, Elsevier, vol. 116(3), pages 414-417.
- Konstantin A. Kholodilin & Boriss Siliverstovs, 2010. "Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany," Discussion Papers of DIW Berlin 1036, DIW Berlin, German Institute for Economic Research.
- Boriss Siliverstovs & Konstantin Kholodilin, 2012. "Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany," ERSA conference papers ersa12p911, European Regional Science Association.
- Konstantin Kholodilin & Boriss Siliverstovs, 2010. "Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany," KOF Working papers 10-261, KOF Swiss Economic Institute, ETH Zurich.
- Hou, Xiaohui & Gao, Zhixian & Wang, Qing, 2016. "Internet finance development and banking market discipline: Evidence from China," Journal of Financial Stability, Elsevier, vol. 22(C), pages 88-100.
- Levent Bulut, 2015. "Google Trends and Forecasting Performance of Exchange Rate Models," IPEK Working Papers 1505, Ipek University, Department of Economics.
- Kovács, Olivér, 2017. "Az ipar 4.0 komplexitása - II [The Complexity of Industry 4.0 - Part 2]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 970-987.
- Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
- Georgios Bampinas & Theodore Panagiotidis & Christina Rouska, 2019.
"Volatility persistence and asymmetry under the microscope: the role of information demand for gold and oil,"
Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 180-197, February.
- Georgios Bampinas & Theodore Panagiotidis & Christina Rouska, 2018. "Volatility persistence and asymmetry under the microscope: The role of information demand for gold and oil," Working Paper series 18-13, Rimini Centre for Economic Analysis.
- Mohamed Arouri & Amal Aouadi & Philippe Foulquier & Frédéric Teulon, 2013. "Can Information Demand Help to Predict Stock Market Liquidity ? Google it !," Working Papers 2013-24, Department of Research, Ipag Business School.
- Vosen, Simeon & Schmidt, Torsten, 2012.
"A monthly consumption indicator for Germany based on Internet search query data,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
- Simeon Vosen & Torsten Schmidt, 2012. "A monthly consumption indicator for Germany based on Internet search query data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(7), pages 683-687, May.
- Schmidt, Torsten & Vosen, Simeon, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 208, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- repec:hal:spmain:info:hdl:2441/5k53daedc2827oa91tfpuscvbn is not listed on IDEAS
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- Pietro Giorgio Lovaglio & Mario Mezzanzanica & Emilio Colombo, 2020. "Comparing time series characteristics of official and web job vacancy data," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 85-98, February.
- Dorinth W. van Dijk & Marc K. Francke, 2018.
"Internet Search Behavior, Liquidity and Prices in the Housing Market,"
Real Estate Economics, American Real Estate and Urban Economics Association, vol. 46(2), pages 368-403, June.
- Dorinth van Dijk & Marc Francke, 2015. "Internet search behavior, liquidity and prices in the housing market," DNB Working Papers 481, Netherlands Central Bank, Research Department.
- F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
- Thomas Dimpfl & Tobias Langen, 2019. "How Unemployment Affects Bond Prices: A Mixed Frequency Google Nowcasting Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 551-573, August.
- Heather R. Tierney & Bing Pan, 2012.
"A poisson regression examination of the relationship between website traffic and search engine queries,"
Netnomics, Springer, vol. 13(3), pages 155-189, October.
- Tierney, Heather L. R. & Pan, Bing, 2009. "A Poisson Regression Examination of the Relationship between Website Traffic and Search Engine Queries," MPRA Paper 18413, University Library of Munich, Germany.
- Tierney, Heather L.R. & Pan, Bing, 2009. "A Poisson Regression Examination of the Relationship between Website Traffic and Search Engine Queries," MPRA Paper 19895, University Library of Munich, Germany, revised 10 Jan 2010.
- Tierney, Heather L. R. & Pan, Bing, 2009. "A Poisson Regression Examination of the Relationship between Website Traffic and Search Engine Queries," MPRA Paper 18899, University Library of Munich, Germany, revised 27 Nov 2009.
- Tierney, Heather L.R. & Pan, Bing, 2010. "A Poisson Regression Examination of the Relationship between Website Traffic and Search Engine Queries," MPRA Paper 32117, University Library of Munich, Germany, revised 08 Jul 2011.
- Yann Algan & Fabrice Murtin & Elizabeth Beasley & Kazuhito Higa & Claudia Senik, 2019.
"Well-being through the lens of the internet,"
PLOS ONE, Public Library of Science, vol. 14(1), pages 1-23, January.
- Yann Algan & Fabrice Murtin & Elizabeth Beasley & Kazuhito Higa & Claudia Senik, 2019. "Well-being through the Lens of the Internet," Post-Print halshs-02096551, HAL.
- Yann Algan & Fabrice Murtin & Elizabeth Beasley & Kazuhito Higa & Claudia Senik, 2019. "Well-being through the Lens of the Internet," SciencePo Working papers Main halshs-02096551, HAL.
- Yann Algan & Fabrice Murtin & Elizabeth Beasley & Kazuhito Higa & Claudia Senik, 2019. "Well-being through the Lens of the Internet," PSE-Ecole d'économie de Paris (Postprint) halshs-02096551, HAL.
- Huang, Xiankai & Zhang, Lifeng & Ding, Yusi, 2017. "The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City," Tourism Management, Elsevier, vol. 58(C), pages 301-306.
- repec:hal:spmain:info:hdl:2441/63csdfkqvu9nfanvuffe3qk8r6 is not listed on IDEAS
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Dimpfl, Thomas & Langen, Tobias, 2015. "A Cross-Country Analysis of Unemployment and Bonds with Long-Memory Relations," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112921, Verein für Socialpolitik / German Economic Association.
- Tefft, Nathan, 2011. "Insights on unemployment, unemployment insurance, and mental health," Journal of Health Economics, Elsevier, vol. 30(2), pages 258-264, March.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Mirko Seithe & Lena Calahorrano, 2014. "Analysing Party Preferences Using Google Trends," CESifo Working Paper Series 4631, CESifo.
- Michał Chojnowski & Piotr Dybka, 2017. "Is Exchange Rate Moody? Forecasting Exchange Rate with Google Trends Data," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(1), pages 1-21, June.
- Niesert, Robin F. & Oorschot, Jochem A. & Veldhuisen, Christian P. & Brons, Kester & Lange, Rutger-Jan, 2020.
"Can Google search data help predict macroeconomic series?,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 1163-1172.
- Robin Niesert & Jochem Oorschot & Chris Veldhuisen & Kester Brons & Rutger-Jan Lange, "undated". "Can Google Search Data Help Predict Macroeconomic Series?," Tinbergen Institute Discussion Papers 19-021/III, Tinbergen Institute.
- Chiu, Peng-Chia & Teoh, Siew Hong & Zhang, Yinglei & Huang, Xuan, 2023. "Using Google searches of firm products to detect revenue management," Accounting, Organizations and Society, Elsevier, vol. 109(C).
- Mihaela Simionescu & Dalia Streimikiene & Wadim Strielkowski, 2020. "What Does Google Trends Tell Us about the Impact of Brexit on the Unemployment Rate in the UK?," Sustainability, MDPI, vol. 12(3), pages 1-10, January.
- Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
- David Iselin & Boriss Siliverstovs, 2016. "Using newspapers for tracking the business cycle: a comparative study for Germany and Switzerland," Applied Economics, Taylor & Francis Journals, vol. 48(12), pages 1103-1118, March.
- Cheng, Maoyong & Qu, Yang, 2020. "Does bank FinTech reduce credit risk? Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 63(C).
- Aleksandar Bradic, 2012. "The Role of Social Feedback in Financing of Technology Ventures," Papers 1301.2196, arXiv.org.
- Latoeiro, Pedro & Ramos, Sofía B. & Veiga, Helena, 2013. "Predictability of stock market activity using Google search queries," DES - Working Papers. Statistics and Econometrics. WS ws130605, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
- Olivier Gergaud & Victor Ginsburgh, 2016. "Evaluating the Economic Effects of Cultural Events," Working Papers ECARES ECARES 2016-24, ULB -- Universite Libre de Bruxelles.
- D'Amuri, Francesco & Marcucci, Juri, 2009.
"‘Google it!’ Forecasting the US unemployment rate with a Google job search index,"
ISER Working Paper Series
2009-32, Institute for Social and Economic Research.
- D'Amuri, Francesco/FD & Marcucci, Juri/JM, 2009. ""Google it!" Forecasting the US unemployment rate with a Google job search index," MPRA Paper 18248, University Library of Munich, Germany.
- Francesco D’Amuri & Juri Marcucci, 2010. "“Google it!”Forecasting the US Unemployment Rate with a Google Job Search index," Working Papers 2010.31, Fondazione Eni Enrico Mattei.
- Schmitz, Sebastian, 2017. "The effects of Germany's new minimum wage on employment and welfare dependency," Discussion Papers 2017/21, Free University Berlin, School of Business & Economics.
- Chien-jung Ting & Yi-Long Hsiao, 2022. "Nowcasting the GDP in Taiwan and the Real-Time Tourism Data," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 12(3), pages 1-2.
- Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
- Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
- Jan Goebel & Christian Krekel & Tim Tiefenbach & Nicholas R. Ziebarth, 2014. "Natural Disaster, Environmental Concerns, Well-Being and Policy Action," CINCH Working Paper Series 1405, Universitaet Duisburg-Essen, Competent in Competition and Health.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Bańbura, Marta & Belousova, Irina & Bodnár, Katalin & Tóth, Máté Barnabás, 2023. "Nowcasting employment in the euro area," Working Paper Series 2815, European Central Bank.
- Huijian Han & Zhiming Li & Zongwei Li, 2023. "Using Machine Learning Methods to Predict Consumer Confidence from Search Engine Data," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
- Semen Son Turan, 2014. "Internet Search Volume and Stock Return Volatility: The Case of Turkish Companies," Information Management and Business Review, AMH International, vol. 6(6), pages 317-328.
- Nuarpear Lekfuangfu & Voraprapa Nakavachara & Paphatsorn Sawaengsuksant, 2017. "Glancing at Labour Market Mismatch with User-generated Internet Data," PIER Discussion Papers 53, Puey Ungphakorn Institute for Economic Research.
- Calahorrano, Lena & Seithe, Mirko, 2014. "Analysing Party Preferences Using Google Trends," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100294, Verein für Socialpolitik / German Economic Association.
- Geng, Hongyan & Guo, Pin & Cheng, Maoyong, 2023. "The dark side of bank FinTech: Evidence from a transition economy," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1811-1830.
- Anastasiou, Dimitrios & Bragoudakis, Zacharias & Giannoulakis, Stelios, 2021.
"Perceived vs actual financial crisis and bank credit standards: Is there any indication of self-fulfilling prophecy?,"
Research in International Business and Finance, Elsevier, vol. 58(C).
- Dimitrios Anastasiou & Zacharias Bragoudakis & Stelios Giannoulakis, 2020. "Perceived vs actual financial crisis and bank credit standards: is there any indication of self-fulfilling prophecy?," Working Papers 277, Bank of Greece.
- repec:spo:wpmain:info:hdl:2441/5k53daedc2827oa91tfpuscvbn is not listed on IDEAS
- Grazia Biorci & Antonella Emina & Michelangelo Puliga & Lisa Sella & Gianna Vivaldo, 2016. "Tweet-tales: moods of socio-economic crisis?," Working Papers 04/2016, IMT School for Advanced Studies Lucca, revised Jul 2016.
- Bai, Lijuan & Yan, Xiangbin & Yu, Guang, 2019. "Impact of CEO media appearance on corporate performance in social media," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Bouoiyour, Jamal & Selmi, Refk & Tiwari, Aviral, 2014.
"Is Bitcoin business income or speculative bubble? Unconditional vs. conditional frequency domain analysis,"
MPRA Paper
59595, University Library of Munich, Germany.
- Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari, 2015. "Is Bitcoin Business Income or Speculative Bubble? Unconditional vs. Conditional Frequency Domain Analysis," Post-Print hal-01879684, HAL.
- Jaroslav Pavlicek & Ladislav Kristoufek, 2014. "Can Google searches help nowcast and forecast unemployment rates in the Visegrad Group countries?," Papers 1408.6639, arXiv.org.
- Döhrn, Roland & Mitze, Timo & Schmidt, Torsten & Tauchmann, Harald & Vosen, Simeon, 2010. "Analyse und Prognose des Spar- und Konsumverhaltens privater Haushalte: Endbericht - November 2010," RWI Projektberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, number 69982, March.
- Kureková, Lucia Mýtna & Beblavy, Miroslav & Thum, Anna-Elisabeth, 2014. "Using Internet Data to Analyse the Labour Market: A Methodological Enquiry," IZA Discussion Papers 8555, Institute of Labor Economics (IZA).
- Vicente, María Rosalía & López-Menéndez, Ana J. & Pérez, Rigoberto, 2015. "Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 132-139.
- Karolien Lenaerts & Miroslav Beblavý & Brian Fabo, 2016.
"Prospects for utilisation of non-vacancy Internet data in labour market analysis—an overview,"
IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 5(1), pages 1-18, December.
- Karolien Lenaerts & Miroslav Beblavý & Brian Fabo, 2016. "Prospects for utilisation of non-vacancy Internet data in labour market analysis—an overview," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 5(1), pages 1-18, December.
- Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
- Dean Fantazzini, 2014.
"Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data,"
PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
- Fantazziini, Dean, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US using Online Search Data," MPRA Paper 59696, University Library of Munich, Germany.
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Googlemetrie und Arbeitsmarkt in der Wirtschaftskrise," IZA Standpunkte 17, Institute of Labor Economics (IZA).
- Simeon Vosen & Torsten Schmidt, 2011.
"Forecasting private consumption: survey‐based indicators vs. Google trends,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
- Schmidt, Torsten & Vosen, Simeon, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 155, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Serhan Cevik, 2022.
"Where should we go? Internet searches and tourist arrivals,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
- Mr. Serhan Cevik, 2020. "Where Should We Go? Internet Searches and Tourist Arrivals," IMF Working Papers 2020/022, International Monetary Fund.
- Francesco, D'Amuri, 2009. "Predicting unemployment in short samples with internet job search query data," MPRA Paper 18403, University Library of Munich, Germany.
- Ahmed Shoukry Rashad, 2022. "The Power of Travel Search Data in Forecasting the Tourism Demand in Dubai," Forecasting, MDPI, vol. 4(3), pages 1-11, July.
- Jiawei Du, 2020. "A Research on Cross-sectional Return Dispersion and Volatility of US Stock Market during COVID-19," Papers 2007.11546, arXiv.org, revised Mar 2021.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
- Ying Liu & Yibing Chen & Sheng Wu & Geng Peng & Benfu Lv, 2015. "Composite leading search index: a preprocessing method of internet search data for stock trends prediction," Annals of Operations Research, Springer, vol. 234(1), pages 77-94, November.
- Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
- repec:ipg:wpaper:24 is not listed on IDEAS
- Andreea Avramescu & Arkadiusz Wiśniowski, 2021. "Now-casting Romanian migration into the United Kingdom by using Google Search engine data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(40), pages 1219-1254.
- Pincheira, Pablo & Hernández, Ana María, 2019. "Forecasting Unemployment Rates with International Factors," MPRA Paper 97855, University Library of Munich, Germany.
- Anastasiou, Dimitrios & Drakos, Konstantinos, 2021. "European depositors’ behavior and crisis sentiment," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 117-136.
- Li, Xin & Pan, Bing & Law, Rob & Huang, Xiankai, 2017. "Forecasting tourism demand with composite search index," Tourism Management, Elsevier, vol. 59(C), pages 57-66.
- Hantzsche, Arno, 2022. "Fiscal uncertainty and sovereign credit risk," European Economic Review, Elsevier, vol. 148(C).
- Costanza Catalano & Andrea Carboni & Claudio Doria, 2023. "How can Big Data improve the quality of tourism statistics? The Bank of Italy's experience in compiling the "travel" item in the Balance of Payments," Questioni di Economia e Finanza (Occasional Papers) 761, Bank of Italy, Economic Research and International Relations Area.
- Mihnea Constantinescu, 2023. "Sparse Warcasting," Working Papers 01/2023, National Bank of Ukraine.
- Rodrigo Mulero & Alfredo García-Hiernaux, 2021. "Forecasting Spanish unemployment with Google Trends and dimension reduction techniques," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(3), pages 329-349, September.
- McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
- Tomas Havranek & Ayaz Zeynalov, 2021.
"Forecasting tourist arrivals: Google Trends meets mixed-frequency data,"
Tourism Economics, , vol. 27(1), pages 129-148, February.
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data," MPRA Paper 90205, University Library of Munich, Germany.
- repec:ipg:wpaper:2013-024 is not listed on IDEAS
- Caterina Schiavoni & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021.
"A dynamic factor model approach to incorporate Big Data in state space models for official statistics,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 324-353, January.
- Caterina Schiavoni & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2019. "A dynamic factor model approach to incorporate Big Data in state space models for official statistics," Papers 1901.11355, arXiv.org, revised Feb 2020.
- Siliverstovs, Boriss & Wochner, Daniel S., 2018. "Google Trends and reality: Do the proportions match?," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 1-23.
- Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
- Maria De Paola & Vincenzo Scoppa, 2013.
"Consumers’ Reactions to Negative Information on Product Quality: Evidence from Scanner Data,"
Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(3), pages 235-280, May.
- Maria De Paola & Vincenzo Scoppa, 2010. "Consumers’ Reactions To Negative Information On Product Quality: Evidence From Scanner Data," Working Papers 201012, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
- Alessia Naccarato & Andrea Pierini & Stefano Falorsi, 2015. "Using Google Trend Data To Predict The Italian Unemployment Rate," Departmental Working Papers of Economics - University 'Roma Tre' 0203, Department of Economics - University Roma Tre.
- Nikolaos Askitas, 2015. "Google search activity data and breaking trends," IZA World of Labor, Institute of Labor Economics (IZA), pages 206-206, November.
- Tang, Mengxuan & Hu, Yang & Corbet, Shaen & Hou, Yang (Greg) & Oxley, Les, 2024. "Fintech, bank diversification and liquidity: Evidence from China," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Nathan, Max & Rosso, Anna, 2014.
"Mapping information economy businesses with big data: findings from the UK,"
LSE Research Online Documents on Economics
60615, London School of Economics and Political Science, LSE Library.
- Max Nathan & Anna Rosso, 2014. "Mapping Information Economy Businesses with Big Data: Findings for the UK," CEP Occasional Papers 44, Centre for Economic Performance, LSE.
- Nathan, Max & Rosso, Anna & Bouet, Francois, 2014. "Mapping 'Information Economy' Businesses with Big Data: Findings for the UK," IZA Discussion Papers 8662, Institute of Labor Economics (IZA).
- Bas Scheer, 2022. "Addressing Unemployment Rate Forecast Errors in Relation to the Business Cycle," CPB Discussion Paper 434, CPB Netherlands Bureau for Economic Policy Analysis.
- Mario Maggi & Pierpaolo Uberti, 2021. "Google search volumes for portfolio management: performances and asset concentration," Annals of Operations Research, Springer, vol. 299(1), pages 163-175, April.
- Fabo, B., 2017. "Towards an understanding of job matching using web data," Other publications TiSEM b8b877f2-ae6a-495f-b6cc-9, Tilburg University, School of Economics and Management.
- Schmidt, Torsten & Vosen, Simeon, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 382, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Yan Yan & Jiancheng Guan, 2019. "Entrepreneurial ecosystem, entrepreneurial rate and innovation: the moderating role of internet attention," International Entrepreneurship and Management Journal, Springer, vol. 15(2), pages 625-650, June.
- Daniel Aaronson & Scott A. Brave & R. Andrew Butters & Daniel Sacks & Boyoung Seo, 2020.
"Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims,"
Working Paper Series
WP-2020-10, Federal Reserve Bank of Chicago, revised 16 Apr 2020.
- Daniel Aaronson & Scott A. Brave & R. Andrew Butters & Daniel W. Sacks & Boyoung Seo, 2020. "Using the Eye of the Storm to Predict the Wave of Covid-19 UI Claims," Working Paper Series WP 2020-10, Federal Reserve Bank of Chicago.
- Andrius Grybauskas & Vaida Pilinkienė & Mantas Lukauskas & Alina Stundžienė & Jurgita Bruneckienė, 2023. "Nowcasting Unemployment Using Neural Networks and Multi-Dimensional Google Trends Data," Economies, MDPI, vol. 11(5), pages 1-23, April.
- Oscar Claveria, 2019.
"Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations,"
Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
- Claveria, Oscar, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages .3(1-10).
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Eli Arditi & Eldad Yechiam & Gal Zahavi, 2015. "Association between Stock Market Gains and Losses and Google Searches," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-12, October.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Peter Kuhn, 2014. "The internet as a labor market matchmaker," IZA World of Labor, Institute of Labor Economics (IZA), pages 1-18, May.
- Maria De Paola & Vincenzo Scoppa & Valeria Pupo, 2014. "Absenteeism in the Italian Public Sector: The Effects of Changes in Sick Leave Policy," Journal of Labor Economics, University of Chicago Press, vol. 32(2), pages 337-360.
- Sengtha Chay & Nophea Sasaki, 2011. "Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan," Future Internet, MDPI, vol. 3(2), pages 1-13, April.
- Burcu Kapar & Jose Olmo, 2021. "Analysis of Bitcoin prices using market and sentiment variables," The World Economy, Wiley Blackwell, vol. 44(1), pages 45-63, January.
- Scheffel, Eric Michael, 2012. "Political uncertainty in a data-rich environment," MPRA Paper 37318, University Library of Munich, Germany.
- Jan Goebel & Christian Krekel & Tim Tiefenbach & Nicolas Ziebarth, 2015.
"How natural disasters can affect environmental concerns, risk aversion, and even politics: evidence from Fukushima and three European countries,"
Journal of Population Economics, Springer;European Society for Population Economics, vol. 28(4), pages 1137-1180, October.
- Jan Goebel & Christian Krekel & Tim Tiefenbach & Nicolas R. Ziebarth, 2015. "How Natural Disasters Can Affect Environmental Concerns, Risk Aversion, and Even Politics: Evidence from Fukushima and Three European Countries," SOEPpapers on Multidisciplinary Panel Data Research 762, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Pablo Pedraza & Ian Vollbracht, 2023. "General theory of data, artificial intelligence and governance," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-16, December.
- Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
- Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
- Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
- Samvel S. Lazaryan & Nikita E. German, 2018. "Forecasting Current GDP Dynamics With Google Search Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 83-94, December.
- Dimitrios Anastasiou & Konstantinos Drakos, 2021. "Nowcasting the Greek (semi‐) deposit run: Hidden uncertainty about the future currency in a Google search," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1133-1150, January.
- repec:zbw:rwirep:0208 is not listed on IDEAS
- Pietro Giorgio Lovaglio, 2022. "Do job vacancies variations anticipate employment variations by sector? Some preliminary evidence from Italy," LABOUR, CEIS, vol. 36(1), pages 71-93, March.
- Naccarato, Alessia & Falorsi, Stefano & Loriga, Silvia & Pierini, Andrea, 2018. "Combining official and Google Trends data to forecast the Italian youth unemployment rate," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 114-122.
- Azusa Matsumoto & Kohei Matsumura & Noriyuki Shiraki, 2013. "Potential of Search Data in Assessment of Current Economic Conditions," Bank of Japan Research Papers 2013-04-18, Bank of Japan.
- Simionescu, Mihaela & Zimmermann, Klaus F., 2017. "Big Data and Unemployment Analysis," GLO Discussion Paper Series 81, Global Labor Organization (GLO).
- Torsten Schmidt & Simeon Vosen, 2010. "A monthly consumption indicator for Germany based on internet search query data," Ruhr Economic Papers 0208, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
- Johannes Bock, 2018. "Quantifying macroeconomic expectations in stock markets using Google Trends," Papers 1805.00268, arXiv.org.
- Rubén Jesús Pérez-López & Jesús Everardo Olguín Tiznado & María Mojarro Magaña & Claudia Camargo Wilson & Juan Andrés López Barreras & Jorge Luis García-Alcaraz, 2019. "Information Sharing with ICT in Production Systems and Operational Performance," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
- Cristea, R. G., 2020. "Can Alternative Data Improve the Accuracy of Dynamic Factor Model Nowcasts?," Cambridge Working Papers in Economics 20108, Faculty of Economics, University of Cambridge.
- Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
- Branislav Saxa, 2014. "Forecasting Mortgages: Internet Search Data as a Proxy for Mortgage Credit Demand," Working Papers 2014/14, Czech National Bank.
- Vakrman, Tomas & Kristoufek, Ladislav, 2015. "Underpricing, underperformance and overreaction in initial pubic offerings: Evidence from investor attention using online searches," FinMaP-Working Papers 35, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Baumann, Alexendra & Wohlrabe, Klaus, 2019. "Publikationen von Wirtschaftsforschungsinstituten im deutschsprachigen Raum - Eine bibliometrische Analyse [Publications of Economic Research Insitutes in the German Speaking Area - A bibliometric ," MPRA Paper 92240, University Library of Munich, Germany.
- Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
- David Iselin & Boriss Siliverstovs, 2013. "Mit Zeitungen Konjunkturprognosen erstellen: Eine Vergleichsstudie für die Schweiz und Deutschland," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 7(3), pages 104-117, September.
- Rahlff, Helen & Rinne, Ulf & Sonnabend, Hendrik, 2023. "COVID-19, School Closures and (Cyber)Bullying in Germany," IZA Discussion Papers 16650, Institute of Labor Economics (IZA).
- Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
- Lucia Kureková & Miroslav Beblavý & Anna Thum-Thysen, 2015. "Using online vacancies and web surveys to analyse the labour market: a methodological inquiry," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 4(1), pages 1-20, December.
- repec:iab:iabjlr:v:53:i:1:p:art.3 is not listed on IDEAS
- Botezat, Alina, 2017. "Austerity plan announcements and the impact on the employees’ wellbeing," Journal of Economic Psychology, Elsevier, vol. 63(C), pages 1-16.
- F. Kuchler & M. Bowman & M. Sweitzer & C. Greene, 2020. "Evidence from Retail Food Markets That Consumers Are Confused by Natural and Organic Food Labels," Journal of Consumer Policy, Springer, vol. 43(2), pages 379-395, June.
- Tsoyu Calvin Lin & Shih-Hsun Hsu, 2020. "Forecasting Housing Markets from Number of Visits to Actual Price Registration System," International Real Estate Review, Global Social Science Institute, vol. 23(4), pages 505-536.
- Simionescu, Mihaela & Raišienė, Agota Giedrė, 2021. "A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Yakubu, Hanan & Kwong, C.K., 2021. "Forecasting the importance of product attributes using online customer reviews and Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
- Gulsah Senturk, 2022. "Can Google Search Data Improve the Unemployment Rate Forecasting Model? An Empirical Analysis for Turkey," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(2), pages 229-244, July.
- Torsten Schmidt & Simeon Vosen, 2009. "Forecasting Private Consumption: Survey-based Indicators vs. Google Trends," Ruhr Economic Papers 0155, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
- Asgari, Mahdi & Nemati, Mehdi & Zheng, Yuqing, 2018. "Nowcasting Food Stock Movement using Food Safety Related Web Search Queries," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266323, Southern Agricultural Economics Association.
- Takao Noguchi & Neil Stewart & Christopher Y Olivola & Helen Susannah Moat & Tobias Preis, 2014. "Characterizing the Time-Perspective of Nations with Search Engine Query Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
- Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
- Voraprapa Nakavachara & Nuarpear Lekfuangfu, 2017. "Predicting the Present Revisited: The Case of Thailand," PIER Discussion Papers 70, Puey Ungphakorn Institute for Economic Research.
- Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
- Fang, Yi & Wang, Qi & Wang, Fan & Zhao, Yang, 2023. "Bank fintech, liquidity creation, and risk-taking: Evidence from China," Economic Modelling, Elsevier, vol. 127(C).
- Florian Schaffner, 2015. "Predicting US bank failures with internet search volume data," ECON - Working Papers 214, Department of Economics - University of Zurich.
- Andrea Fasulo & Alessio Guandalini & Marco D. Terribili, 2017. "Google Trends For Nowcasting Quarterly Household Consumption Expenditure," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 71(4), pages 2-10, October-D.
- Rodrigo Mulero & Alfredo Garcia-Hiernaux, 2023. "Forecasting unemployment with Google Trends: age, gender and digital divide," Empirical Economics, Springer, vol. 65(2), pages 587-605, August.
- Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
- Meshcheryakov, Artem & Winters, Drew B., 2022. "Retail investor attention and the limit order book: Intraday analysis of attention-based trading," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
- Gutiérrez, Antonio, 2022. "Movilidad urbana y datos de alta frecuencia [Urban mobility and high frequency data]," MPRA Paper 114854, University Library of Munich, Germany.
- Merve Alanyali & Tobias Preis & Helen Susannah Moat, 2016. "Tracking Protests Using Geotagged Flickr Photographs," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-8, March.
- Dean Fantazzini & Mario Maggi, 2014. "Proposed Coal Power Plants and Coal-To-Liquids Plants: Which Ones Survive and Why?," DEM Working Papers Series 082, University of Pavia, Department of Economics and Management.
- Andrea Fasulo & Alessia Naccarato & Alessio Pizzichini, 2019. "Nowcasting the Italian unemployment rate with Google Trends," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 73(4), pages 29-40, October-D.
- Askitas, Nikos & Zimmermann, Klaus F., 2011. "Detecting Mortgage Delinquencies," IZA Discussion Papers 5895, Institute of Labor Economics (IZA).
- Daud, Siti Nurazira Mohd & Ahmad, Abd Halim & Khalid, Airil & Azman-Saini, W.N.W., 2022. "FinTech and financial stability: Threat or opportunity?," Finance Research Letters, Elsevier, vol. 47(PB).
- Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
- Consolo, Agostino & Foroni, Claudia & Martínez Hernández, Catalina, 2021. "A mixed frequency BVAR for the euro area labour market," Working Paper Series 2601, European Central Bank.
- Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
- Pin Guo & Yue Shen, 2016. "The impact of Internet finance on commercial banks’ risk taking: evidence from China," China Finance and Economic Review, Springer, vol. 4(1), pages 1-19, December.
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.